{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "dk_clsQsU831" }, "source": [ "# muMAG Standard Problem #5\n", "\n", "A detailed problem description can be found [here](https://www.ctcms.nist.gov/~rdm/std5/spec5.xhtml)" ] }, { "cell_type": "markdown", "metadata": { "id": "NOnBqo-nsvzX" }, "source": [ "## Google Colab Link\n", "\n", "The demo can be run on Google Colab without any local installation.\n", "Use the following [link](https://colab.research.google.com/drive/1RXlrHUtB39aHtyp2btk3GNEBS0f5ZDFk) to try it out." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6jerYNCbL217", "outputId": "e8b5be49-fdde-4ac5-f362-897f173b8dcc" }, "outputs": [], "source": [ "!pip install -q magnumnp numpy==1.22.4" ] }, { "cell_type": "markdown", "metadata": { "id": "O_kE_ZQMWi7g" }, "source": [ "## Run Demo:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "iwW3mUynhwkJ", "outputId": "60f0996c-133a-4dc5-d1b9-0d9496721a59" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2023-05-08 12:41:03 magnum.np:INFO \u001b[1;37;32mmagnum.np 1.0.9\u001b[0m\n", "2023-05-08 12:41:03 magnum.np:INFO \u001b[1;37;32m[State] running on device: cpu (dtype = float64)\u001b[0m\n", "2023-05-08 12:41:03 magnum.np:INFO \u001b[1;37;32m[Mesh] 40x40x1 (size= 2.5e-09 x 2.5e-09 x 1e-08)\u001b[0m\n", "2023-05-08 12:41:03 magnum.np:INFO \u001b[1;37;32m[LLGSolver] using RKF45 solver (atol = 1e-05)\u001b[0m\n", "2023-05-08 12:41:03 magnum.np:INFO [DEMAG]: Time calculation of demag kernel = 0.5202043056488037 s\n", "2023-05-08 12:41:16 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1e-11 dE=1.17866 E=1.10736e-17\u001b[0m\n", "2023-05-08 12:41:17 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=2e-11 dE=0.54 E=7.19067e-18\u001b[0m\n", "2023-05-08 12:41:17 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=3e-11 dE=0.240628 E=5.79599e-18\u001b[0m\n", "2023-05-08 12:41:18 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=4e-11 dE=0.159977 E=4.99664e-18\u001b[0m\n", "2023-05-08 12:41:18 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=5e-11 dE=0.107171 E=4.51298e-18\u001b[0m\n", "2023-05-08 12:41:19 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=6e-11 dE=0.0733524 E=4.20457e-18\u001b[0m\n", "2023-05-08 12:41:19 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=7e-11 dE=0.0499754 E=4.00444e-18\u001b[0m\n", "2023-05-08 12:41:20 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=8e-11 dE=0.0323459 E=3.87897e-18\u001b[0m\n", "2023-05-08 12:41:20 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=9e-11 dE=0.0193946 E=3.80517e-18\u001b[0m\n", "2023-05-08 12:41:20 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1e-10 dE=0.0107105 E=3.76485e-18\u001b[0m\n", "2023-05-08 12:41:21 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.1e-10 dE=0.00544763 E=3.74445e-18\u001b[0m\n", "2023-05-08 12:41:21 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.2e-10 dE=0.00254625 E=3.73494e-18\u001b[0m\n", "2023-05-08 12:41:21 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.3e-10 dE=0.00108651 E=3.73089e-18\u001b[0m\n", "2023-05-08 12:41:22 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.4e-10 dE=0.000419659 E=3.72932e-18\u001b[0m\n", "2023-05-08 12:41:22 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.5e-10 dE=0.00014697 E=3.72877e-18\u001b[0m\n", "2023-05-08 12:41:23 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.6e-10 dE=4.95584e-05 E=3.72859e-18\u001b[0m\n", "2023-05-08 12:41:23 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.7e-10 dE=2.01327e-05 E=3.72852e-18\u001b[0m\n", "2023-05-08 12:41:23 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.8e-10 dE=1.25286e-05 E=3.72847e-18\u001b[0m\n", "2023-05-08 12:41:24 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=1.9e-10 dE=1.00055e-05 E=3.72843e-18\u001b[0m\n", "2023-05-08 12:41:24 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=2e-10 dE=7.97085e-06 E=3.7284e-18\u001b[0m\n", "2023-05-08 12:41:24 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=2.1e-10 dE=5.8682e-06 E=3.72838e-18\u001b[0m\n", "2023-05-08 12:41:25 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=2.2e-10 dE=3.99851e-06 E=3.72836e-18\u001b[0m\n", "2023-05-08 12:41:25 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=2.3e-10 dE=2.57985e-06 E=3.72835e-18\u001b[0m\n", "2023-05-08 12:41:25 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=2.4e-10 dE=1.62926e-06 E=3.72835e-18\u001b[0m\n", "2023-05-08 12:41:26 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=2.5e-10 dE=1.05161e-06 E=3.72834e-18\u001b[0m\n", "2023-05-08 12:41:26 magnum.np:INFO \u001b[1;37;34m[LLG] relax: t=2.6e-10 dE=7.26778e-07 E=3.72834e-18\u001b[0m\n", "/home/nina/git/magnum.np/venv/lib/python3.8/site-packages/pyvista/core/grid.py:508: PyVistaDeprecationWarning: `dims` argument is deprecated. Please use `dimensions`.\n", " warnings.warn(\n", "2023-05-08 12:41:26 magnum.np:INFO \u001b[1;37;32m[LLGSolver] using RKF45 solver (atol = 1e-05)\u001b[0m\n", "2023-05-08 12:41:27 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1e-11\u001b[0m\n", "2023-05-08 12:41:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2e-11\u001b[0m\n", "2023-05-08 12:41:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3e-11\u001b[0m\n", "2023-05-08 12:41:29 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4e-11\u001b[0m\n", "2023-05-08 12:41:29 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5e-11\u001b[0m\n", "2023-05-08 12:41:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6e-11\u001b[0m\n", "2023-05-08 12:41:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7e-11\u001b[0m\n", "2023-05-08 12:41:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8e-11\u001b[0m\n", "2023-05-08 12:41:32 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9e-11\u001b[0m\n", "2023-05-08 12:41:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1e-10\u001b[0m\n", "2023-05-08 12:41:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.1e-10\u001b[0m\n", "2023-05-08 12:41:34 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.2e-10\u001b[0m\n", "2023-05-08 12:41:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.3e-10\u001b[0m\n", "2023-05-08 12:41:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.4e-10\u001b[0m\n", "2023-05-08 12:41:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.5e-10\u001b[0m\n", "2023-05-08 12:41:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.6e-10\u001b[0m\n", "2023-05-08 12:41:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.7e-10\u001b[0m\n", "2023-05-08 12:41:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.8e-10\u001b[0m\n", "2023-05-08 12:41:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.9e-10\u001b[0m\n", "2023-05-08 12:41:39 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2e-10\u001b[0m\n", "2023-05-08 12:41:39 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.1e-10\u001b[0m\n", "2023-05-08 12:41:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.2e-10\u001b[0m\n", "2023-05-08 12:41:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.3e-10\u001b[0m\n", "2023-05-08 12:41:41 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.4e-10\u001b[0m\n", "2023-05-08 12:41:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.5e-10\u001b[0m\n", "2023-05-08 12:41:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.6e-10\u001b[0m\n", "2023-05-08 12:41:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.7e-10\u001b[0m\n", "2023-05-08 12:41:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.8e-10\u001b[0m\n", "2023-05-08 12:41:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.9e-10\u001b[0m\n", "2023-05-08 12:41:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3e-10\u001b[0m\n", "2023-05-08 12:41:45 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.1e-10\u001b[0m\n", "2023-05-08 12:41:45 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.2e-10\u001b[0m\n", "2023-05-08 12:41:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.3e-10\u001b[0m\n", "2023-05-08 12:41:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.4e-10\u001b[0m\n", "2023-05-08 12:41:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.5e-10\u001b[0m\n", "2023-05-08 12:41:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.6e-10\u001b[0m\n", "2023-05-08 12:41:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.7e-10\u001b[0m\n", "2023-05-08 12:41:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.8e-10\u001b[0m\n", "2023-05-08 12:41:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.9e-10\u001b[0m\n", "2023-05-08 12:41:50 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4e-10\u001b[0m\n", "2023-05-08 12:41:51 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.1e-10\u001b[0m\n", "2023-05-08 12:41:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.2e-10\u001b[0m\n", "2023-05-08 12:41:53 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.3e-10\u001b[0m\n", "2023-05-08 12:41:55 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.4e-10\u001b[0m\n", "2023-05-08 12:41:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.5e-10\u001b[0m\n", "2023-05-08 12:41:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.6e-10\u001b[0m\n", "2023-05-08 12:41:59 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.7e-10\u001b[0m\n", "2023-05-08 12:42:00 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.8e-10\u001b[0m\n", "2023-05-08 12:42:00 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.9e-10\u001b[0m\n", "2023-05-08 12:42:01 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5e-10\u001b[0m\n", "2023-05-08 12:42:02 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.1e-10\u001b[0m\n", "2023-05-08 12:42:02 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.2e-10\u001b[0m\n", "2023-05-08 12:42:03 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.3e-10\u001b[0m\n", "2023-05-08 12:42:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.4e-10\u001b[0m\n", "2023-05-08 12:42:05 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.5e-10\u001b[0m\n", "2023-05-08 12:42:05 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.6e-10\u001b[0m\n", "2023-05-08 12:42:06 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.7e-10\u001b[0m\n", "2023-05-08 12:42:07 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.8e-10\u001b[0m\n", "2023-05-08 12:42:07 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.9e-10\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2023-05-08 12:42:08 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6e-10\u001b[0m\n", "2023-05-08 12:42:09 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.1e-10\u001b[0m\n", "2023-05-08 12:42:11 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.2e-10\u001b[0m\n", "2023-05-08 12:42:11 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.3e-10\u001b[0m\n", "2023-05-08 12:42:12 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.4e-10\u001b[0m\n", "2023-05-08 12:42:12 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.5e-10\u001b[0m\n", "2023-05-08 12:42:13 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.6e-10\u001b[0m\n", "2023-05-08 12:42:14 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.7e-10\u001b[0m\n", "2023-05-08 12:42:15 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.8e-10\u001b[0m\n", "2023-05-08 12:42:15 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=6.9e-10\u001b[0m\n", "2023-05-08 12:42:16 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7e-10\u001b[0m\n", "2023-05-08 12:42:17 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.1e-10\u001b[0m\n", "2023-05-08 12:42:17 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.2e-10\u001b[0m\n", "2023-05-08 12:42:18 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.3e-10\u001b[0m\n", "2023-05-08 12:42:19 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.4e-10\u001b[0m\n", "2023-05-08 12:42:19 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.5e-10\u001b[0m\n", "2023-05-08 12:42:20 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.6e-10\u001b[0m\n", "2023-05-08 12:42:21 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.7e-10\u001b[0m\n", "2023-05-08 12:42:21 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.8e-10\u001b[0m\n", "2023-05-08 12:42:22 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=7.9e-10\u001b[0m\n", "2023-05-08 12:42:22 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8e-10\u001b[0m\n", "2023-05-08 12:42:23 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.1e-10\u001b[0m\n", "2023-05-08 12:42:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.2e-10\u001b[0m\n", "2023-05-08 12:42:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.3e-10\u001b[0m\n", "2023-05-08 12:42:25 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.4e-10\u001b[0m\n", "2023-05-08 12:42:25 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.5e-10\u001b[0m\n", "2023-05-08 12:42:26 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.6e-10\u001b[0m\n", "2023-05-08 12:42:27 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.7e-10\u001b[0m\n", "2023-05-08 12:42:27 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.8e-10\u001b[0m\n", "2023-05-08 12:42:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=8.9e-10\u001b[0m\n", "2023-05-08 12:42:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9e-10\u001b[0m\n", "2023-05-08 12:42:29 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.1e-10\u001b[0m\n", "2023-05-08 12:42:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.2e-10\u001b[0m\n", "2023-05-08 12:42:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.3e-10\u001b[0m\n", "2023-05-08 12:42:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.4e-10\u001b[0m\n", "2023-05-08 12:42:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.5e-10\u001b[0m\n", "2023-05-08 12:42:32 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.6e-10\u001b[0m\n", "2023-05-08 12:42:32 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.7e-10\u001b[0m\n", "2023-05-08 12:42:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.8e-10\u001b[0m\n", "2023-05-08 12:42:34 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=9.9e-10\u001b[0m\n", "2023-05-08 12:42:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1e-09\u001b[0m\n", "2023-05-08 12:42:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.01e-09\u001b[0m\n", "2023-05-08 12:42:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.02e-09\u001b[0m\n", "2023-05-08 12:42:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.03e-09\u001b[0m\n", "2023-05-08 12:42:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.04e-09\u001b[0m\n", "2023-05-08 12:42:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.05e-09\u001b[0m\n", "2023-05-08 12:42:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.06e-09\u001b[0m\n", "2023-05-08 12:42:39 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.07e-09\u001b[0m\n", "2023-05-08 12:42:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.08e-09\u001b[0m\n", "2023-05-08 12:42:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.09e-09\u001b[0m\n", "2023-05-08 12:42:41 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.1e-09\u001b[0m\n", "2023-05-08 12:42:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.11e-09\u001b[0m\n", "2023-05-08 12:42:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.12e-09\u001b[0m\n", "2023-05-08 12:42:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.13e-09\u001b[0m\n", "2023-05-08 12:42:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.14e-09\u001b[0m\n", "2023-05-08 12:42:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.15e-09\u001b[0m\n", "2023-05-08 12:42:45 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.16e-09\u001b[0m\n", "2023-05-08 12:42:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.17e-09\u001b[0m\n", "2023-05-08 12:42:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.18e-09\u001b[0m\n", "2023-05-08 12:42:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.19e-09\u001b[0m\n", "2023-05-08 12:42:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.2e-09\u001b[0m\n", "2023-05-08 12:42:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.21e-09\u001b[0m\n", "2023-05-08 12:42:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.22e-09\u001b[0m\n", "2023-05-08 12:42:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.23e-09\u001b[0m\n", "2023-05-08 12:42:50 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.24e-09\u001b[0m\n", "2023-05-08 12:42:51 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.25e-09\u001b[0m\n", "2023-05-08 12:42:51 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.26e-09\u001b[0m\n", "2023-05-08 12:42:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.27e-09\u001b[0m\n", "2023-05-08 12:42:53 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.28e-09\u001b[0m\n", "2023-05-08 12:42:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.29e-09\u001b[0m\n", "2023-05-08 12:42:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.3e-09\u001b[0m\n", "2023-05-08 12:42:55 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.31e-09\u001b[0m\n", "2023-05-08 12:42:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.32e-09\u001b[0m\n", "2023-05-08 12:42:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.33e-09\u001b[0m\n", "2023-05-08 12:42:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.34e-09\u001b[0m\n", "2023-05-08 12:42:58 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.35e-09\u001b[0m\n", "2023-05-08 12:42:59 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.36e-09\u001b[0m\n", "2023-05-08 12:43:00 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.37e-09\u001b[0m\n", "2023-05-08 12:43:00 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.38e-09\u001b[0m\n", "2023-05-08 12:43:01 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.39e-09\u001b[0m\n", "2023-05-08 12:43:02 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.4e-09\u001b[0m\n", "2023-05-08 12:43:03 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.41e-09\u001b[0m\n", "2023-05-08 12:43:03 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.42e-09\u001b[0m\n", "2023-05-08 12:43:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.43e-09\u001b[0m\n", "2023-05-08 12:43:05 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.44e-09\u001b[0m\n", "2023-05-08 12:43:06 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.45e-09\u001b[0m\n", "2023-05-08 12:43:06 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.46e-09\u001b[0m\n", "2023-05-08 12:43:07 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.47e-09\u001b[0m\n", "2023-05-08 12:43:08 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.48e-09\u001b[0m\n", "2023-05-08 12:43:08 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.49e-09\u001b[0m\n", "2023-05-08 12:43:09 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.5e-09\u001b[0m\n", "2023-05-08 12:43:09 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.51e-09\u001b[0m\n", "2023-05-08 12:43:10 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.52e-09\u001b[0m\n", "2023-05-08 12:43:11 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.53e-09\u001b[0m\n", "2023-05-08 12:43:12 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.54e-09\u001b[0m\n", "2023-05-08 12:43:12 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.55e-09\u001b[0m\n", "2023-05-08 12:43:13 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.56e-09\u001b[0m\n", "2023-05-08 12:43:14 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.57e-09\u001b[0m\n", "2023-05-08 12:43:15 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.58e-09\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2023-05-08 12:43:15 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.59e-09\u001b[0m\n", "2023-05-08 12:43:16 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.6e-09\u001b[0m\n", "2023-05-08 12:43:17 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.61e-09\u001b[0m\n", "2023-05-08 12:43:18 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.62e-09\u001b[0m\n", "2023-05-08 12:43:18 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.63e-09\u001b[0m\n", "2023-05-08 12:43:19 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.64e-09\u001b[0m\n", "2023-05-08 12:43:20 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.65e-09\u001b[0m\n", "2023-05-08 12:43:21 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.66e-09\u001b[0m\n", "2023-05-08 12:43:22 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.67e-09\u001b[0m\n", "2023-05-08 12:43:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.68e-09\u001b[0m\n", "2023-05-08 12:43:26 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.69e-09\u001b[0m\n", "2023-05-08 12:43:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.7e-09\u001b[0m\n", "2023-05-08 12:43:29 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.71e-09\u001b[0m\n", "2023-05-08 12:43:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.72e-09\u001b[0m\n", "2023-05-08 12:43:32 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.73e-09\u001b[0m\n", "2023-05-08 12:43:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.74e-09\u001b[0m\n", "2023-05-08 12:43:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.75e-09\u001b[0m\n", "2023-05-08 12:43:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.76e-09\u001b[0m\n", "2023-05-08 12:43:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.77e-09\u001b[0m\n", "2023-05-08 12:43:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.78e-09\u001b[0m\n", "2023-05-08 12:43:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.79e-09\u001b[0m\n", "2023-05-08 12:43:39 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.8e-09\u001b[0m\n", "2023-05-08 12:43:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.81e-09\u001b[0m\n", "2023-05-08 12:43:41 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.82e-09\u001b[0m\n", "2023-05-08 12:43:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.83e-09\u001b[0m\n", "2023-05-08 12:43:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.84e-09\u001b[0m\n", "2023-05-08 12:43:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.85e-09\u001b[0m\n", "2023-05-08 12:43:45 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.86e-09\u001b[0m\n", "2023-05-08 12:43:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.87e-09\u001b[0m\n", "2023-05-08 12:43:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.88e-09\u001b[0m\n", "2023-05-08 12:43:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.89e-09\u001b[0m\n", "2023-05-08 12:43:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.9e-09\u001b[0m\n", "2023-05-08 12:43:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.91e-09\u001b[0m\n", "2023-05-08 12:43:50 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.92e-09\u001b[0m\n", "2023-05-08 12:43:51 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.93e-09\u001b[0m\n", "2023-05-08 12:43:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.94e-09\u001b[0m\n", "2023-05-08 12:43:53 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.95e-09\u001b[0m\n", "2023-05-08 12:43:53 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.96e-09\u001b[0m\n", "2023-05-08 12:43:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.97e-09\u001b[0m\n", "2023-05-08 12:43:55 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.98e-09\u001b[0m\n", "2023-05-08 12:43:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=1.99e-09\u001b[0m\n", "2023-05-08 12:43:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2e-09\u001b[0m\n", "2023-05-08 12:43:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.01e-09\u001b[0m\n", "2023-05-08 12:43:58 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.02e-09\u001b[0m\n", "2023-05-08 12:43:58 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.03e-09\u001b[0m\n", "2023-05-08 12:43:59 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.04e-09\u001b[0m\n", "2023-05-08 12:44:00 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.05e-09\u001b[0m\n", "2023-05-08 12:44:01 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.06e-09\u001b[0m\n", "2023-05-08 12:44:01 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.07e-09\u001b[0m\n", "2023-05-08 12:44:02 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.08e-09\u001b[0m\n", "2023-05-08 12:44:03 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.09e-09\u001b[0m\n", "2023-05-08 12:44:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.1e-09\u001b[0m\n", "2023-05-08 12:44:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.11e-09\u001b[0m\n", "2023-05-08 12:44:05 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.12e-09\u001b[0m\n", "2023-05-08 12:44:06 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.13e-09\u001b[0m\n", "2023-05-08 12:44:07 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.14e-09\u001b[0m\n", "2023-05-08 12:44:08 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.15e-09\u001b[0m\n", "2023-05-08 12:44:09 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.16e-09\u001b[0m\n", "2023-05-08 12:44:10 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.17e-09\u001b[0m\n", "2023-05-08 12:44:11 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.18e-09\u001b[0m\n", "2023-05-08 12:44:11 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.19e-09\u001b[0m\n", "2023-05-08 12:44:12 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.2e-09\u001b[0m\n", "2023-05-08 12:44:13 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.21e-09\u001b[0m\n", "2023-05-08 12:44:14 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.22e-09\u001b[0m\n", "2023-05-08 12:44:15 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.23e-09\u001b[0m\n", "2023-05-08 12:44:16 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.24e-09\u001b[0m\n", "2023-05-08 12:44:17 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.25e-09\u001b[0m\n", "2023-05-08 12:44:18 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.26e-09\u001b[0m\n", "2023-05-08 12:44:19 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.27e-09\u001b[0m\n", "2023-05-08 12:44:20 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.28e-09\u001b[0m\n", "2023-05-08 12:44:21 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.29e-09\u001b[0m\n", "2023-05-08 12:44:22 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.3e-09\u001b[0m\n", "2023-05-08 12:44:22 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.31e-09\u001b[0m\n", "2023-05-08 12:44:23 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.32e-09\u001b[0m\n", "2023-05-08 12:44:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.33e-09\u001b[0m\n", "2023-05-08 12:44:25 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.34e-09\u001b[0m\n", "2023-05-08 12:44:26 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.35e-09\u001b[0m\n", "2023-05-08 12:44:27 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.36e-09\u001b[0m\n", "2023-05-08 12:44:27 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.37e-09\u001b[0m\n", "2023-05-08 12:44:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.38e-09\u001b[0m\n", "2023-05-08 12:44:29 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.39e-09\u001b[0m\n", "2023-05-08 12:44:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.4e-09\u001b[0m\n", "2023-05-08 12:44:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.41e-09\u001b[0m\n", "2023-05-08 12:44:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.42e-09\u001b[0m\n", "2023-05-08 12:44:32 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.43e-09\u001b[0m\n", "2023-05-08 12:44:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.44e-09\u001b[0m\n", "2023-05-08 12:44:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.45e-09\u001b[0m\n", "2023-05-08 12:44:34 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.46e-09\u001b[0m\n", "2023-05-08 12:44:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.47e-09\u001b[0m\n", "2023-05-08 12:44:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.48e-09\u001b[0m\n", "2023-05-08 12:44:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.49e-09\u001b[0m\n", "2023-05-08 12:44:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.5e-09\u001b[0m\n", "2023-05-08 12:44:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.51e-09\u001b[0m\n", "2023-05-08 12:44:39 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.52e-09\u001b[0m\n", "2023-05-08 12:44:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.53e-09\u001b[0m\n", "2023-05-08 12:44:41 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.54e-09\u001b[0m\n", "2023-05-08 12:44:41 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.55e-09\u001b[0m\n", "2023-05-08 12:44:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.56e-09\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2023-05-08 12:44:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.57e-09\u001b[0m\n", "2023-05-08 12:44:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.58e-09\u001b[0m\n", "2023-05-08 12:44:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.59e-09\u001b[0m\n", "2023-05-08 12:44:45 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.6e-09\u001b[0m\n", "2023-05-08 12:44:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.61e-09\u001b[0m\n", "2023-05-08 12:44:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.62e-09\u001b[0m\n", "2023-05-08 12:44:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.63e-09\u001b[0m\n", "2023-05-08 12:44:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.64e-09\u001b[0m\n", "2023-05-08 12:44:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.65e-09\u001b[0m\n", "2023-05-08 12:44:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.66e-09\u001b[0m\n", "2023-05-08 12:44:50 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.67e-09\u001b[0m\n", "2023-05-08 12:44:51 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.68e-09\u001b[0m\n", "2023-05-08 12:44:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.69e-09\u001b[0m\n", "2023-05-08 12:44:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.7e-09\u001b[0m\n", "2023-05-08 12:44:53 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.71e-09\u001b[0m\n", "2023-05-08 12:44:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.72e-09\u001b[0m\n", "2023-05-08 12:44:55 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.73e-09\u001b[0m\n", "2023-05-08 12:44:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.74e-09\u001b[0m\n", "2023-05-08 12:44:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.75e-09\u001b[0m\n", "2023-05-08 12:44:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.76e-09\u001b[0m\n", "2023-05-08 12:44:58 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.77e-09\u001b[0m\n", "2023-05-08 12:44:59 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.78e-09\u001b[0m\n", "2023-05-08 12:44:59 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.79e-09\u001b[0m\n", "2023-05-08 12:45:00 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.8e-09\u001b[0m\n", "2023-05-08 12:45:01 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.81e-09\u001b[0m\n", "2023-05-08 12:45:02 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.82e-09\u001b[0m\n", "2023-05-08 12:45:03 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.83e-09\u001b[0m\n", "2023-05-08 12:45:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.84e-09\u001b[0m\n", "2023-05-08 12:45:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.85e-09\u001b[0m\n", "2023-05-08 12:45:05 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.86e-09\u001b[0m\n", "2023-05-08 12:45:06 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.87e-09\u001b[0m\n", "2023-05-08 12:45:07 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.88e-09\u001b[0m\n", "2023-05-08 12:45:08 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.89e-09\u001b[0m\n", "2023-05-08 12:45:09 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.9e-09\u001b[0m\n", "2023-05-08 12:45:09 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.91e-09\u001b[0m\n", "2023-05-08 12:45:10 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.92e-09\u001b[0m\n", "2023-05-08 12:45:11 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.93e-09\u001b[0m\n", "2023-05-08 12:45:12 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.94e-09\u001b[0m\n", "2023-05-08 12:45:13 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.95e-09\u001b[0m\n", "2023-05-08 12:45:13 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.96e-09\u001b[0m\n", "2023-05-08 12:45:14 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.97e-09\u001b[0m\n", "2023-05-08 12:45:15 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.98e-09\u001b[0m\n", "2023-05-08 12:45:16 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=2.99e-09\u001b[0m\n", "2023-05-08 12:45:16 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3e-09\u001b[0m\n", "2023-05-08 12:45:17 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.01e-09\u001b[0m\n", "2023-05-08 12:45:18 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.02e-09\u001b[0m\n", "2023-05-08 12:45:19 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.03e-09\u001b[0m\n", "2023-05-08 12:45:20 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.04e-09\u001b[0m\n", "2023-05-08 12:45:20 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.05e-09\u001b[0m\n", "2023-05-08 12:45:21 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.06e-09\u001b[0m\n", "2023-05-08 12:45:22 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.07e-09\u001b[0m\n", "2023-05-08 12:45:23 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.08e-09\u001b[0m\n", "2023-05-08 12:45:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.09e-09\u001b[0m\n", "2023-05-08 12:45:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.1e-09\u001b[0m\n", "2023-05-08 12:45:25 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.11e-09\u001b[0m\n", "2023-05-08 12:45:26 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.12e-09\u001b[0m\n", "2023-05-08 12:45:27 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.13e-09\u001b[0m\n", "2023-05-08 12:45:27 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.14e-09\u001b[0m\n", "2023-05-08 12:45:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.15e-09\u001b[0m\n", "2023-05-08 12:45:29 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.16e-09\u001b[0m\n", "2023-05-08 12:45:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.17e-09\u001b[0m\n", "2023-05-08 12:45:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.18e-09\u001b[0m\n", "2023-05-08 12:45:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.19e-09\u001b[0m\n", "2023-05-08 12:45:32 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.2e-09\u001b[0m\n", "2023-05-08 12:45:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.21e-09\u001b[0m\n", "2023-05-08 12:45:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.22e-09\u001b[0m\n", "2023-05-08 12:45:34 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.23e-09\u001b[0m\n", "2023-05-08 12:45:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.24e-09\u001b[0m\n", "2023-05-08 12:45:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.25e-09\u001b[0m\n", "2023-05-08 12:45:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.26e-09\u001b[0m\n", "2023-05-08 12:45:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.27e-09\u001b[0m\n", "2023-05-08 12:45:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.28e-09\u001b[0m\n", "2023-05-08 12:45:39 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.29e-09\u001b[0m\n", "2023-05-08 12:45:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.3e-09\u001b[0m\n", "2023-05-08 12:45:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.31e-09\u001b[0m\n", "2023-05-08 12:45:41 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.32e-09\u001b[0m\n", "2023-05-08 12:45:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.33e-09\u001b[0m\n", "2023-05-08 12:45:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.34e-09\u001b[0m\n", "2023-05-08 12:45:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.35e-09\u001b[0m\n", "2023-05-08 12:45:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.36e-09\u001b[0m\n", "2023-05-08 12:45:45 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.37e-09\u001b[0m\n", "2023-05-08 12:45:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.38e-09\u001b[0m\n", "2023-05-08 12:45:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.39e-09\u001b[0m\n", "2023-05-08 12:45:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.4e-09\u001b[0m\n", "2023-05-08 12:45:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.41e-09\u001b[0m\n", "2023-05-08 12:45:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.42e-09\u001b[0m\n", "2023-05-08 12:45:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.43e-09\u001b[0m\n", "2023-05-08 12:45:50 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.44e-09\u001b[0m\n", "2023-05-08 12:45:51 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.45e-09\u001b[0m\n", "2023-05-08 12:45:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.46e-09\u001b[0m\n", "2023-05-08 12:45:53 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.47e-09\u001b[0m\n", "2023-05-08 12:45:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.48e-09\u001b[0m\n", "2023-05-08 12:45:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.49e-09\u001b[0m\n", "2023-05-08 12:45:55 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.5e-09\u001b[0m\n", "2023-05-08 12:45:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.51e-09\u001b[0m\n", "2023-05-08 12:45:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.52e-09\u001b[0m\n", "2023-05-08 12:45:58 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.53e-09\u001b[0m\n", "2023-05-08 12:45:59 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.54e-09\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2023-05-08 12:46:00 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.55e-09\u001b[0m\n", "2023-05-08 12:46:01 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.56e-09\u001b[0m\n", "2023-05-08 12:46:02 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.57e-09\u001b[0m\n", "2023-05-08 12:46:03 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.58e-09\u001b[0m\n", "2023-05-08 12:46:03 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.59e-09\u001b[0m\n", "2023-05-08 12:46:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.6e-09\u001b[0m\n", "2023-05-08 12:46:05 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.61e-09\u001b[0m\n", "2023-05-08 12:46:06 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.62e-09\u001b[0m\n", "2023-05-08 12:46:07 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.63e-09\u001b[0m\n", "2023-05-08 12:46:08 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.64e-09\u001b[0m\n", "2023-05-08 12:46:09 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.65e-09\u001b[0m\n", "2023-05-08 12:46:10 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.66e-09\u001b[0m\n", "2023-05-08 12:46:10 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.67e-09\u001b[0m\n", "2023-05-08 12:46:11 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.68e-09\u001b[0m\n", "2023-05-08 12:46:12 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.69e-09\u001b[0m\n", "2023-05-08 12:46:13 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.7e-09\u001b[0m\n", "2023-05-08 12:46:14 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.71e-09\u001b[0m\n", "2023-05-08 12:46:15 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.72e-09\u001b[0m\n", "2023-05-08 12:46:16 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.73e-09\u001b[0m\n", "2023-05-08 12:46:17 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.74e-09\u001b[0m\n", "2023-05-08 12:46:18 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.75e-09\u001b[0m\n", "2023-05-08 12:46:19 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.76e-09\u001b[0m\n", "2023-05-08 12:46:19 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.77e-09\u001b[0m\n", "2023-05-08 12:46:20 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.78e-09\u001b[0m\n", "2023-05-08 12:46:21 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.79e-09\u001b[0m\n", "2023-05-08 12:46:22 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.8e-09\u001b[0m\n", "2023-05-08 12:46:23 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.81e-09\u001b[0m\n", "2023-05-08 12:46:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.82e-09\u001b[0m\n", "2023-05-08 12:46:25 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.83e-09\u001b[0m\n", "2023-05-08 12:46:26 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.84e-09\u001b[0m\n", "2023-05-08 12:46:27 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.85e-09\u001b[0m\n", "2023-05-08 12:46:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.86e-09\u001b[0m\n", "2023-05-08 12:46:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.87e-09\u001b[0m\n", "2023-05-08 12:46:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.88e-09\u001b[0m\n", "2023-05-08 12:46:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.89e-09\u001b[0m\n", "2023-05-08 12:46:32 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.9e-09\u001b[0m\n", "2023-05-08 12:46:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.91e-09\u001b[0m\n", "2023-05-08 12:46:34 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.92e-09\u001b[0m\n", "2023-05-08 12:46:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.93e-09\u001b[0m\n", "2023-05-08 12:46:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.94e-09\u001b[0m\n", "2023-05-08 12:46:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.95e-09\u001b[0m\n", "2023-05-08 12:46:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.96e-09\u001b[0m\n", "2023-05-08 12:46:39 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.97e-09\u001b[0m\n", "2023-05-08 12:46:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.98e-09\u001b[0m\n", "2023-05-08 12:46:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=3.99e-09\u001b[0m\n", "2023-05-08 12:46:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4e-09\u001b[0m\n", "2023-05-08 12:46:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.01e-09\u001b[0m\n", "2023-05-08 12:46:45 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.02e-09\u001b[0m\n", "2023-05-08 12:46:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.03e-09\u001b[0m\n", "2023-05-08 12:46:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.04e-09\u001b[0m\n", "2023-05-08 12:46:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.05e-09\u001b[0m\n", "2023-05-08 12:46:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.06e-09\u001b[0m\n", "2023-05-08 12:46:50 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.07e-09\u001b[0m\n", "2023-05-08 12:46:51 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.08e-09\u001b[0m\n", "2023-05-08 12:46:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.09e-09\u001b[0m\n", "2023-05-08 12:46:53 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.1e-09\u001b[0m\n", "2023-05-08 12:46:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.11e-09\u001b[0m\n", "2023-05-08 12:46:55 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.12e-09\u001b[0m\n", "2023-05-08 12:46:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.13e-09\u001b[0m\n", "2023-05-08 12:46:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.14e-09\u001b[0m\n", "2023-05-08 12:46:58 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.15e-09\u001b[0m\n", "2023-05-08 12:46:59 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.16e-09\u001b[0m\n", "2023-05-08 12:47:00 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.17e-09\u001b[0m\n", "2023-05-08 12:47:01 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.18e-09\u001b[0m\n", "2023-05-08 12:47:02 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.19e-09\u001b[0m\n", "2023-05-08 12:47:03 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.2e-09\u001b[0m\n", "2023-05-08 12:47:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.21e-09\u001b[0m\n", "2023-05-08 12:47:05 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.22e-09\u001b[0m\n", "2023-05-08 12:47:06 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.23e-09\u001b[0m\n", "2023-05-08 12:47:07 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.24e-09\u001b[0m\n", "2023-05-08 12:47:09 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.25e-09\u001b[0m\n", "2023-05-08 12:47:10 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.26e-09\u001b[0m\n", "2023-05-08 12:47:11 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.27e-09\u001b[0m\n", "2023-05-08 12:47:13 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.28e-09\u001b[0m\n", "2023-05-08 12:47:14 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.29e-09\u001b[0m\n", "2023-05-08 12:47:15 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.3e-09\u001b[0m\n", "2023-05-08 12:47:16 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.31e-09\u001b[0m\n", "2023-05-08 12:47:18 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.32e-09\u001b[0m\n", "2023-05-08 12:47:20 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.33e-09\u001b[0m\n", "2023-05-08 12:47:21 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.34e-09\u001b[0m\n", "2023-05-08 12:47:23 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.35e-09\u001b[0m\n", "2023-05-08 12:47:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.36e-09\u001b[0m\n", "2023-05-08 12:47:25 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.37e-09\u001b[0m\n", "2023-05-08 12:47:26 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.38e-09\u001b[0m\n", "2023-05-08 12:47:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.39e-09\u001b[0m\n", "2023-05-08 12:47:29 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.4e-09\u001b[0m\n", "2023-05-08 12:47:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.41e-09\u001b[0m\n", "2023-05-08 12:47:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.42e-09\u001b[0m\n", "2023-05-08 12:47:32 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.43e-09\u001b[0m\n", "2023-05-08 12:47:33 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.44e-09\u001b[0m\n", "2023-05-08 12:47:34 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.45e-09\u001b[0m\n", "2023-05-08 12:47:35 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.46e-09\u001b[0m\n", "2023-05-08 12:47:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.47e-09\u001b[0m\n", "2023-05-08 12:47:37 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.48e-09\u001b[0m\n", "2023-05-08 12:47:39 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.49e-09\u001b[0m\n", "2023-05-08 12:47:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.5e-09\u001b[0m\n", "2023-05-08 12:47:41 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.51e-09\u001b[0m\n", "2023-05-08 12:47:42 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.52e-09\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2023-05-08 12:47:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.53e-09\u001b[0m\n", "2023-05-08 12:47:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.54e-09\u001b[0m\n", "2023-05-08 12:47:46 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.55e-09\u001b[0m\n", "2023-05-08 12:47:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.56e-09\u001b[0m\n", "2023-05-08 12:47:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.57e-09\u001b[0m\n", "2023-05-08 12:47:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.58e-09\u001b[0m\n", "2023-05-08 12:47:50 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.59e-09\u001b[0m\n", "2023-05-08 12:47:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.6e-09\u001b[0m\n", "2023-05-08 12:47:53 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.61e-09\u001b[0m\n", "2023-05-08 12:47:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.62e-09\u001b[0m\n", "2023-05-08 12:47:55 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.63e-09\u001b[0m\n", "2023-05-08 12:47:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.64e-09\u001b[0m\n", "2023-05-08 12:47:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.65e-09\u001b[0m\n", "2023-05-08 12:47:58 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.66e-09\u001b[0m\n", "2023-05-08 12:47:59 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.67e-09\u001b[0m\n", "2023-05-08 12:48:01 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.68e-09\u001b[0m\n", "2023-05-08 12:48:02 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.69e-09\u001b[0m\n", "2023-05-08 12:48:04 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.7e-09\u001b[0m\n", "2023-05-08 12:48:05 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.71e-09\u001b[0m\n", "2023-05-08 12:48:07 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.72e-09\u001b[0m\n", "2023-05-08 12:48:08 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.73e-09\u001b[0m\n", "2023-05-08 12:48:10 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.74e-09\u001b[0m\n", "2023-05-08 12:48:12 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.75e-09\u001b[0m\n", "2023-05-08 12:48:14 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.76e-09\u001b[0m\n", "2023-05-08 12:48:17 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.77e-09\u001b[0m\n", "2023-05-08 12:48:19 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.78e-09\u001b[0m\n", "2023-05-08 12:48:21 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.79e-09\u001b[0m\n", "2023-05-08 12:48:22 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.8e-09\u001b[0m\n", "2023-05-08 12:48:24 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.81e-09\u001b[0m\n", "2023-05-08 12:48:25 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.82e-09\u001b[0m\n", "2023-05-08 12:48:28 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.83e-09\u001b[0m\n", "2023-05-08 12:48:30 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.84e-09\u001b[0m\n", "2023-05-08 12:48:31 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.85e-09\u001b[0m\n", "2023-05-08 12:48:34 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.86e-09\u001b[0m\n", "2023-05-08 12:48:36 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.87e-09\u001b[0m\n", "2023-05-08 12:48:38 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.88e-09\u001b[0m\n", "2023-05-08 12:48:40 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.89e-09\u001b[0m\n", "2023-05-08 12:48:41 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.9e-09\u001b[0m\n", "2023-05-08 12:48:43 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.91e-09\u001b[0m\n", "2023-05-08 12:48:44 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.92e-09\u001b[0m\n", "2023-05-08 12:48:45 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.93e-09\u001b[0m\n", "2023-05-08 12:48:47 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.94e-09\u001b[0m\n", "2023-05-08 12:48:48 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.95e-09\u001b[0m\n", "2023-05-08 12:48:49 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.96e-09\u001b[0m\n", "2023-05-08 12:48:51 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.97e-09\u001b[0m\n", "2023-05-08 12:48:52 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.98e-09\u001b[0m\n", "2023-05-08 12:48:54 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=4.99e-09\u001b[0m\n", "2023-05-08 12:48:56 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5e-09\u001b[0m\n", "2023-05-08 12:48:57 magnum.np:INFO \u001b[1;37;34m[LLG] step: dt= 1e-11 t=5.01e-09\u001b[0m\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "=========================================================================\n", "TIMER REPORT\n", "=========================================================================\n", "Operation No of calls Avg time [ms] Total time [s]\n", "----------------------- ------------- --------------- ----------------\n", "LLGSolver.relax 1 23085.6 23.0856\n", " DemagField.h 3375 2.32368 7.84242\n", " ExchangeField.h 3375 3.7503 12.6573\n", "LLGSolver.step 501 880.359 441.06\n", " DemagField.h 76836 3.0168 231.799\n", " ExchangeField.h 76836 0.429053 32.9668\n", " SpinTorqueZhangLi.h 76836 1.03389 79.44\n", "----------------------- ------------- --------------- ----------------\n", "Total 474.321\n", "Missing 10.175\n", "=========================================================================\n", "\n" ] } ], "source": [ "#TODO: read latest script content from gitlab repository, as soon as %load works with Colab\n", "from magnumnp import *\n", "import torch\n", "\n", "Timer.enable()\n", "\n", "# initialize state\n", "n = (40, 40, 1)\n", "dx = (2.5e-9, 2.5e-9, 10e-9)\n", "mesh = Mesh(n, dx)\n", "\n", "state = State(mesh)\n", "state.material = {\n", " \"Ms\": 8e5,\n", " \"A\": 1.3e-11,\n", " \"alpha\": 0.1,\n", " \"xi\": 0.05,\n", " \"b\": 72.17e-12\n", " }\n", "\n", "# initialize magnetization that relaxes into s-state\n", "state.m = state.Constant([0,0,0])\n", "state.m[:20,:,:,1] = -1.\n", "state.m[20:,:,:,1] = 1.\n", "state.m[20,20,:,1] = 0.\n", "state.m[20,20,:,2] = 1.\n", "\n", "state.j = state.Tensor([1e12, 0, 0])\n", "\n", "# initialize field terms\n", "demag = DemagField()\n", "exchange = ExchangeField()\n", "torque = SpinTorqueZhangLi()\n", "\n", "# initialize sstate\n", "llg = LLGSolver([demag, exchange])\n", "llg.relax(state)\n", "write_vti(state.m, \"data/m0.vti\", state)\n", "\n", "# perform integration with spin torque\n", "llg = LLGSolver([demag, exchange, torque])\n", "logger = Logger(\"data\", ['t', 'm'], [\"m\"])\n", "while state.t < 5e-9:\n", " llg.step(state, 1e-11)\n", " logger << state\n", "\n", "Timer.print_report()" ] }, { "cell_type": "markdown", "metadata": { "id": "wO5hJKVCmVt7" }, "source": [ "## Plot Results:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from os import path\n", "if not path.isdir(\"ref\"):\n", " !mkdir ref\n", " !wget -P ref https://gitlab.com/magnum.np/magnum.np/raw/main/demos/sp5/ref/m.dat" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 334 }, "id": "2KHqxaW4hwkL", "outputId": "99d3e926-e304-4620-c6ed-f6017a65366f" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAHWCAYAAAAVazrYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d4AdZbn4/5nTt/eWzSab3htpJJSAhI4IgiBeaQp6xdj4ol68CApcYwVUvKJeAfHCTwSvgBJKEhNKEkJIQnpvm2y2937a/P54Tt2S7G52z5Y8H5icmXfemXnP2Xdm3ud9mmGapomiKIqiKIqiKIoSMywD3QBFURRFURRFUZSzDRXEFEVRFEVRFEVRYowKYoqiKIqiKIqiKDFGBTFFURRFURRFUZQYo4KYoiiKoiiKoihKjFFBTFEURVEURVEUJcaoIKYoiqIoiqIoihJjVBBTFEVRFEVRFEWJMSqIKYqiKIqiKIqixBgVxBRFUZRBQWFhIXfccUdMrnXHHXdQWFgYk2t1h2effRbDMPjoo49OW/eiiy7ioosu6v9GKYqiKP2KCmKKoijDmB07dnDjjTcyevRoXC4X+fn5XHrppfz617+OqvejH/2IV155ZWAaOYi56KKLMAwjtKSnpzN//nyefvpp/H7/QDdvULJt2zYMw2Dfvn0APP74450KvUHhs7OltLQ0xq1WFEWJPbaBboCiKIrSP6xfv56LL76YUaNGcffdd5Obm8vx48f54IMP+OUvf8nXvva1UN0f/ehH3HjjjVx33XUD1+BBysiRI1m+fDkAFRUVPPfcc3zxi19k//79/PjHPx7g1g0+Nm7cSHp6OhMnTgRgw4YNnHvuuV3Wf/jhhxkzZkxUWWpqan82UVEUZVCggpiiKMow5b/+679ISUlh06ZNHQa25eXlA9OoGNHa2orD4cBiOXPDj5SUFD7/+c+Htr/85S8zadIknnzySR555BHsdnuHY/x+P263G5fLdcbXH2p8+OGHLFiwAMMwABHE7r333i7rX3nllcybNy9WzVMURRk0qGmioijKMOXQoUNMmzatU+1CdnZ2aN0wDJqamvjTn/4UMg0L+modO3aMe+65h0mTJhEXF0dGRgaf+cxnOHr0aNT5gmZm69at49577yUrK4uEhASuv/56Kioqouqapsmjjz7KyJEjiY+P5+KLL2bXrl0d2lhdXc19993HjBkzSExMJDk5mSuvvJJt27ZF1Vu7di2GYfCXv/yFBx54gPz8fOLj46mvrwfglVdeYfr06bhcLqZPn87f//73XvyaYeLj4zn33HNpamoKfTfDMFi2bBnPP/8806ZNw+l08uabbwKwdetWrrzySpKTk0lMTOSSSy7hgw8+6PTczc3NfPnLXyYjI4Pk5GRuu+02ampqTtumtrY2HnroIcaPH4/T6aSgoIDvfOc7tLW1RdULtvOll15i6tSpxMXFsWjRInbs2AHA7373O8aPH4/L5eKiiy7q8HfuipqaGiorK6msrGTjxo1Mnz6dyspKdu3axYkTJ5gwYQKVlZU0NjZ2enxDQwM+n69b11IURRkuqEZMURRlmDJ69Gg2bNjAzp07mT59epf1/vznP3PXXXexYMECvvSlLwEwbtw4ADZt2sT69ev57Gc/y8iRIzl69Ci//e1vueiii9i9ezfx8fFR5/ra175GWloaDz30EEePHuWJJ55g2bJlvPjii6E6Dz74II8++ihXXXUVV111FVu2bOGyyy7D7XZHnevw4cO88sorfOYzn2HMmDGUlZXxu9/9jiVLlrB7925GjBgRVf+RRx7B4XBw33330dbWhsPh4O233+aGG25g6tSpLF++nKqqKu68805Gjhx5Rr/t4cOHsVqtUULuv/71L/7617+ybNkyMjMzKSwsZNeuXVxwwQUkJyfzne98B7vdzu9+9zsuuugi3nnnHRYuXBh13mXLlpGamsoPfvAD9u3bx29/+1uOHTsWEjY7w+/3c+211/L+++/zpS99iSlTprBjxw4ef/xx9u/f38H377333uO1117jq1/9KgDLly/nmmuu4Tvf+Q7//d//zT333ENNTQ0//elP+cIXvsC//vWv0/4ec+bM4dixY6HtnTt38vOf/zy0/clPfhKA22+/nWeffTbq2IsvvpjGxkYcDgeXX345v/jFL5gwYcJpr6koijLkMRVFUZRhydtvv21arVbTarWaixYtMr/zne+Yb731lul2uzvUTUhIMG+//fYO5c3NzR3KNmzYYALmc889Fyp75plnTMBcunSp6ff7Q+Xf+ta3TKvVatbW1pqmaZrl5eWmw+Ewr7766qh63/ve90wgqg2tra2mz+eLuvaRI0dMp9NpPvzww6GyNWvWmIA5duzYDu2dPXu2mZeXF7p+8HcBzNGjR3f4bu1ZsmSJOXnyZLOiosKsqKgw9+zZY3796183AfOTn/xkqB5gWiwWc9euXVHHX3fddabD4TAPHToUKjt58qSZlJRkXnjhhR1+v7lz50b9fX7605+agPnqq69GtWnJkiWh7T//+c+mxWIx33vvvahrP/XUUyZgrlu3LqqdTqfTPHLkSKjsd7/7nQmYubm5Zn19faj8/vvvN4Goul3x/vvvmytXrjS///3vmzabzXzjjTfMlStXmldeeaU5b948c+XKlebKlSujfp8XX3zRvOOOO8w//elP5t///nfzgQceMOPj483MzEyzqKjotNdUFEUZ6qhpoqIoyjDl0ksvZcOGDVx77bVs27aNn/70p1x++eXk5+fz2muvdesccXFxoXWPx0NVVRXjx48nNTWVLVu2dKj/pS99KUpzc8EFF+Dz+ULaklWrVuF2u/na174WVe+b3/xmh3M5nc6Qj5fP56OqqorExEQmTZrU6bVvv/32qPaWlJTw8ccfc/vtt5OSkhL1u0ydOrVb3x9g7969ZGVlkZWVxZQpU/j1r3/N1VdfzdNPPx1Vb8mSJVHn9fl8vP3221x33XWMHTs2VJ6Xl8fnPvc53n///ZD5ZJAvfelLUT5nX/nKV7DZbKxYsaLL9r300ktMmTKFyZMnh8wDKysr+cQnPgHAmjVroupfcsklUVEMg1q5G264gaSkpA7lhw8fPuXvA3DeeeexdOlSGhsbmT9/PldccQVLly6lqKiIa665hqVLl7J06dKo3+emm27imWee4bbbbuO6667jkUce4a233qKqqor/+q//Ou01FUVRhjoqiCmKogxj5s+fz//93/9RU1PDhx9+yP33309DQwM33ngju3fvPu3xLS0tPPjggxQUFOB0OsnMzCQrK4va2lrq6uo61B81alTUdlpaGkDIzykokLU3PcvKygrVDeL3+3n88ceZMGFC1LW3b9/e6bXbR97r6loAkyZNOuX3jqSwsJCVK1eyatUq3n//fUpLS/nnP/9JZmbmKa9fUVFBc3Nzp9eaMmUKfr+f48ePR5W3b2tiYiJ5eXmn9NU6cOAAu3btCgmLwSUYtbB9YJb2f6OgkFpQUNBp+el81Orq6kLC3+rVq1m4cCGVlZXs37+fXbt2MWvWLCorKzv9m7Xn/PPPZ+HChaxateq0dRVFUYY66iOmKIpyFuBwOJg/fz7z589n4sSJ3Hnnnbz00ks89NBDpzzua1/7Gs888wzf/OY3WbRoESkpKRiGwWc/+9lO82hZrdZOz2OaZo/b/KMf/Yjvf//7fOELX+CRRx4hPT0di8XCN7/5zU6vHakN60sSEhJYunTpaev11/VPh9/vZ8aMGTz22GOd7m8vYHX1N+rt3+5Tn/oU77zzTmh7+/btPPHEE6Ht66+/HhCN4dq1a095rmB7gznIFEVRhjMqiCmKopxlBEOFl5SUhMq6CgTx8ssvc/vtt/OLX/wiVNba2kptbW2vrj169GhAtDiR5noVFRUdNC8vv/wyF198MX/84x+jymtraztoo053rfbEYqCflZVFfHx8p9fau3cvFoulg5B04MABLr744tB2Y2MjJSUlXHXVVV1eZ9y4cWzbto1LLrmky79jf/KLX/yCmpoaNmzYwA9/+EP++c9/YrPZ+PWvf01xcXEo11p7jWdXHD58mKysrP5ssqIoyqBATRMVRVGGKWvWrOlUmxH0N4o0mUtISOhUuLJarR3O8etf/7rXocaXLl2K3W7n17/+ddR5IzUop7r2Sy+9RHFxcbeulZeXx+zZs/nTn/4UZRa3cuXKbpllnilWq5XLLruMV199Ncq0sKysjBdeeIHzzz+f5OTkqGN+//vf4/F4Qtu//e1v8Xq9XHnllV1e56abbqK4uJg//OEPHfa1tLTQ1NR05l/mFMydO5elS5fi9XqZPn16yD+srKws5Bu2dOlS5s6dG3Vc+7QGIH1z8+bNXHHFFf3aZkVRlMGAasQURVGGKV/72tdobm7m+uuvZ/LkybjdbtavX8+LL75IYWEhd955Z6ju3LlzWbVqFY899hgjRoxgzJgxLFy4kGuuuYY///nPpKSkMHXqVDZs2MCqVavIyMjoVZuysrK47777QiHTr7rqKrZu3cobb7zRQct1zTXX8PDDD3PnnXeyePFiduzYwfPPPx+lSTsdy5cv5+qrr+b888/nC1/4AtXV1fz6179m2rRpXea06kseffRRVq5cyfnnn88999yDzWbjd7/7HW1tbfz0pz/tUN/tdnPJJZdw0003sW/fPv77v/+b888/n2uvvbbLa9x666389a9/5d///d9Zs2YN5513Hj6fj7179/LXv/6Vt956KyYJk9etW8fixYsB0Zpu3bqV733ve13WX7x4MXPmzGHevHmkpKSwZcsWnn76aQoKCk55nKIoynBBBTFFUZRhys9//nNeeuklVqxYwe9//3vcbjejRo3innvu4YEHHojKgfXYY4/xpS99iQceeICWlhZuv/12Fi5cyC9/+UusVivPP/88ra2tnHfeeaxatYrLL7+81+169NFHcblcPPXUU6xZs4aFCxfy9ttvc/XVV0fV+973vkdTUxMvvPACL774Iueccw6vv/46//Ef/9Hta11xxRW89NJLPPDAA9x///2MGzeOZ555hldffbVb/kpnyrRp03jvvfe4//77Wb58OX6/n4ULF/K///u/HXKIATz55JM8//zzPPjgg3g8Hm655RZ+9atfndLk0GKx8Morr/D444/z3HPP8fe//534+HjGjh3LN77xjVDQjv7E5/OxcePGUCLwzZs343a7WbRoUZfH3Hzzzbz++uu8/fbbNDc3k5eXx913381DDz1ETk5Ov7dZURRloDHM3nhQK4qiKIqiKIqiKL1GfcQURVEURVEURVFijApiiqIoiqIoiqIoMUYFMUVRFEVRFEVRlBijgpiiKIqiKIqiKEqMUUFMURRFURRFURQlxqggpiiKoiiKoiiKEmM0j1gP8fv9nDx5kqSkpFPmdVEURVEURVEUZXhjmiYNDQ2MGDECi6VnOi4VxHrIyZMnKSgoGOhmKIqiKIqiKIoySDh+/DgjR47s0TEqiPWQpKQkAI4cOUJ6evoAt0YZzng8Ht5++20uu+wy7Hb7QDdHGcZoX1NihfY1JVZoX1NiRXV1NWPGjAnJCD1BBbEeEjRHTEpKIjk5eYBbowxnPB4P8fHxJCcn60tE6Ve0rymxQvuaEiu0rymxwuPxAPTKZUmDdSiKoiiKoiiKosQYFcQURVEURVEURVFijApiiqIoiqIoiqIoMUZ9xBRFUfoZ0zTxer34fL6BbkqneDwebDYbra2tg7aNyvBA+5oSK7SvKX2F1WrFZrP1S9oqFcQURVH6EbfbTUlJCc3NzQPdlC4xTZPc3FyOHz+u+RGVfkX7mhIrtK8pfUl8fDx5eXk4HI4+Pa8KYoqiKP2E3+/nyJEjWK1WRowYgcPhGJQDAr/fT2NjI4mJiT1ORqkoPUH7mhIrtK8pfYFpmrjdbioqKjhy5AgTJkzo0/6kgpiiKEo/4Xa78fv9FBQUEB8fP9DN6RK/34/b7cblcumARelXtK8psUL7mtJXxMXFYbfbOXbsWKhP9RXaMxVFUfoZHQQoiqIoytClv97jQ3508Jvf/IbCwkJcLhcLFy7kww8/7LLuH/7wBy644ALS0tJIS0tj6dKlp6yvKIqiKIqiKIrSHwxpQezFF1/k3nvv5aGHHmLLli3MmjWLyy+/nPLy8k7rr127lltuuYU1a9awYcMGCgoKuOyyyyguLo5xyxVFURRFURRFOZsZ0oLYY489xt13382dd97J1KlTeeqpp4iPj+fpp5/utP7zzz/PPffcw+zZs5k8eTL/8z//g9/vZ/Xq1TFuuaIoiqIoiqIoZzNDNliH2+1m8+bN3H///aEyi8XC0qVL2bBhQ7fO0dzcjMfjIT09vcs6bW1ttLW1hbbr6+sByU/h8Xh62foBxPSDuwk8zbJuWMAeD44EWVcGDcH+NST7mQLI3840Tfx+P36/f6Cb0yWmaYY+B3M7laGP9jUlVmhfU/oSv9+PaZp4PB6sVmvUvjMZpw1ZQayyshKfz0dOTk5UeU5ODnv37u3WOb773e8yYsQIli5d2mWd5cuX88Mf/rBD+Zo1awZ1FLRIbN4mEt1luNw1OLwNGJgd6pgYuO3JtNjTaHLm4rXGDUBLlc5YuXLlQDdB6SU2m43c3FwaGxtxu90D3ZzT0tDQMNBNUM4StK8psUL7mtIXuN1uWlpaePfdd/F6vVH7zihPqDlEKS4uNgFz/fr1UeXf/va3zQULFpz2+OXLl5tpaWnmtm3bTlmvtbXVrKurCy3Hjx83AbOkpMR0u92De6k+bnp2/dP0fPAH07P+v03va98yfc9+0vQ9ucD0/3yy6f/5JNP3+CzT97uLTd+Ld5iefy2Xuh/8wfTsft10V58Y+O9wFi9NTU3mK6+8YjY1NQ14W3Tp3VJfX2/u2rXLbGpqMn0+n+n1es2GlrYBWbxer+nz+TpdvF6vWVNTE6qzZMkS86tf/ar59a9/3UxNTTWzs7PNp556yqyvrzdvv/12MzEx0Rw3bpz5z3/+M3QOt9tt3nnnnWZhYaHpcrnMiRMnmo8//njUddra2sxly5aZKSkpZnp6uvntb3/bvPXWW81rr702VGfJkiXmsmXLzPvuu89MS0szc3JyzAcffDC0/9ChQyZgbt68OVRWVVVlAubq1atNn89nrl692gTMFStWmLNnzzZdLpd58cUXmyUlJeY///lPc/LkyWZSUpL52c9+1mxoaOjyd/njH/9opqSkmCtWrDAnT55sJiQkmJdddpl54sSJUJ3bbrvNvPbaa82HHnrIzMzMNJOSkswvfelLZktLS5fn7c7yzDPPmAkJCebevXtDZf/+7/9uTpo06ZRt7vPF6zV9LfV9tnib68ya8mLT21x3+vqn6LPtF+2zA99nL774YvOee+6JKistLTXtdrv59ttvx6zPer1es6G1wWxobTBPVpwMrff3cqpnrPbXwddfH3zwQRPosPzxj3/stH5TU5O5a9cus76+vsO7vqSkxATMurq6HsszQ1YjlpmZidVqpaysLKq8rKyM3NzcUx7785//nB//+MesWrWKmTNnnrKu0+nE6XR2KLfb7djt9p43PBZ4WuH4Rqg+DJ4WOLQKjm0Qc8R2GAC1R+DkZnEYTB8H4y4GqxUOvQ1phTDqXLCrhmygGNR9TTklPp8PwzCwWCxYLBaa3V6m/2BgNJy7H76ceIe1031Bs51gWwGee+45vvOd7/Dhhx/y4osv8tWvfpVXX32V66+/nv/8z//k8ccf5/bbb6eoqIj4+Hh8Ph8FBQW89NJLZGRksH79er70pS8xYsQIbrrpJgB+9rOf8cILL/DMM88wZcoUfvnLX/Lqq69y8cUXR4UGfu6557j33nvZuHEjGzZs4I477uD888/n0ksvDdUL/qbB9ciy4PbDDz/Mk08+SXx8PDfddBOf/exncTqdvPDCCzQ2NnL99dfzm9/8hu9+97ud/i4Wi4Xm5mYee+wx/vznP2OxWPj85z/Pd77zHZ5//vnQb/avf/2LuLg41q5dy9GjR7nzzjvJzMzkv/7rv3r997rjjjtYsWIFt956K+vXr+ett97ij3/8Ixs2bCAxMbHX5+0x7ib48cg+PWVqdyt+76SYzXcT7bMD22fvuusuli1bxmOPPRYaN73wwgvk5+ezdOnSmCWzb/Y0s+gvi2JyrUg2fm4j8fbuW0ppfx3Y/vrtb3+br3zlK6Ht559/ngcffJAFCxZ0GqreYrFgGEanY7IzGaMNWacgh8PB3LlzowJtBANvLFrU9Q3405/+lEceeYQ333yTefPmxaKpsaWpEvb8Q4Swk1tgzaNwcLUIYa5UGLUIZtwEC74MC78C59wOk66EjPGAAdWHYNP/wIYnobkSao7Crleg7sTAfi9FUWLKrFmzeOCBB5gwYQL3338/LpeLzMxM7r77biZMmMCDDz5IVVUV27dvB+RF9MMf/pB58+YxZswY/u3f/o0777yTv/71r6Fz/vrXv+b+++/n+uuvZ/LkyTz55JOkpqZ2uPbMmTN56KGHmDBhArfddhvz5s3rVVClRx99lPPOO485c+bwxS9+kXfeeYff/va3zJkzhwsuuIAbb7yRNWvWnPIcHo+Hp556innz5nHOOeewbNmyDm1xOBw8/fTTTJs2jauvvpqHH36YX/3qV2fsl/K73/2OkpISvv71r/PFL36RH/zgB8ydO/eMzjmc0T4rDFSf/fSnPw3Aq6++Gip79tlnueOOO2ImhA0ltL8KA9VfExMTyc3NJTc3l6NHj/LAAw/wzDPPMH369F6fszcMWY0YwL333svtt9/OvHnzWLBgAU888QRNTU3ceeedANx2223k5+ezfPlyAH7yk5/w4IMP8sILL1BYWEhpaSkgf4yYzjD2F7VFcHgt+Dyw+1U48o6UJ+bA5GsgZ1rXATkmXA4ttXD0XTjyLlQdhHd+BjNvgvy5cHAVjFwAOVNj9W0UZdgRZ7ey++HLB+zaPSHSWsBqtZKRkcGMGTNCZUH/3Mh0Ib/5zW94+umnKSoqoqWlBbfbzezZswGoq6ujrKyMBQsWRJ137ty5HV6m7S0V8vLyukxL0t3vkJOTQ3x8PGPHjo0qO10uyfj4eMaNG3fKtsyaNSvKZ3jRokU0NjZy/PhxRo8e3eGcke+bz3/+8zz11FOdXjstLY0//vGPXH755SxevJj/+I//OGVb+wV7vGim+gi/3099QwPJSUmnT5DaA+0CaJ8NMlB91uVyceutt/L0009z0003sWXLFnbu3Mlrr712yvb2NXG2ODZ+biN+v5+GhgaSutPX+ui6PUH7qzCQz1iAoqIirrvuOu67776QZjGWDGlB7Oabb6aiooIHH3yQ0tJSZs+ezZtvvhnqvEVFRVE3329/+1vcbjc33nhj1HkeeughfvCDH8Sy6X1P7XE4tAb8Xvj4BSj+SMrHXwqTrgCjG4OwuFSYci0Ung9bnxft2NY/i2ZswuVi7uhpgZE6I6sovcEwDOIdQ+Ox297UImiSEbkNYbPGv/zlL9x333384he/YNGiRSQlJfGzn/2MjRs39sm1g9cJPtNNMxx0qKuIVe3be6rz9qQtkdfuDR9//HFoPTk5+ZR13333XaxWKyUlJTQ1NZGUlHRG1+4xhtEj88DT4veD3Sfn7OPBsfbZrtsSqz571113MXv2bE6cOMEzzzzDJz7xiU4Hyv2JYRjE2+Px+/14bV7i7fExEcR6ivbXrtsSq/7a1NTEtddey6JFi3j44YfP6Jq9ZWiMCE7BsmXLWLZsWaf71q5dG7V99OjR/m/QQNBYDof+JeHot78oQphhgTm3wog5PT9fXDos+irsfR0OrYZ9b4CnDaZeC6Xb5cWcf07ffw9FUYYs69atY/Hixdxzzz2hskOHDoXWU1JSyMnJYdOmTVx44YWA+NBt2bIlNKPbHbKysgAoKSlhzhx5vkW+dAeCbdu20dLSQlyczIh/8MEHJCYmUlBQ0Gn98ePHd+u869ev5yc/+Qn/+Mc/+O53v8uyZcv405/+1GftPtvRPtv3fXbGjBnMmzePP/zhD7zwwgs8+eSTfdbmsx3tr33bX03T5POf/zx+v58///nPA2Y+O/imCJSe4W4WTZjpF5PC4xsBQ3y/eiOEBTEsMOWTMD2gPTz8LzjwlqyXbIOy3WfcdEVRhg8TJkzgo48+4q233mL//v18//vfZ9OmTVF1vva1r7F8+XJeffVV9u3bxze+8Q1qamp69AKMi4vj3HPP5cc//jF79uzhnXfe4YEHHuiT7/Dkk09yySWX9Pg4t9vNF7/4RXbv3s2KFSt46KGHWLZs2RnNwjc0NHDrrbfy9a9/nSuvvJLnn3+eF198kZdffrnX51Si0T7bt302yF133cWPf/xjTNPk+uuvP+PzKYL2177trz/4wQ9YtWoVv/vd72hsbKS0tJTS0lJaWlp6fc7eoILYUMbvh8NrJBBH9WHY9Xcpn/opyJvVsb7FKkE5xn0Cpt8As26B6Z+GsRdB+tjO/ccKz4epgQfpvjegeIusn/hQzCEVRVGAL3/5y3z605/m5ptvZuHChVRVVUXN3ILkbrzlllu47bbbWLRoEYmJiVx++eW4XK4eXevpp5/G6/Uyd+5cvvnNb/Loo4/2yXeorKyMmmHuLpdccgkTJkzgwgsv5Oabb+baa689Y3P3b3zjGyQkJPCjH/0IEE3Dj370I7785S9TXFx8RudWBO2zfdtng9xyyy3YbDZuueWWHv9OStdof+3b/vrOO+/Q2NjI4sWLycvLCy0vvvjiGZ23pxjmmRpinmXU19eTkpJCZWUlGRkZA9uYkm0iGHlb4Z2fQku1BNaYc2vHuikjJWKi8xRBSdoa4PiHEvSjPXteE/NHiw3O+wakFIDVIVoz16l9HJTe4fF4WLFiBVdddZWGrx+itLa2cuTIEcaMGTOoByR+v5/6+nqSk5Nj6kvh9/uZMmUKN910E4888kjMrtuX3HHHHdTW1vLKK68MdFOGBAPV1/oK7bOn5+jRo4wbN45NmzZxzjkD58Yw1PtaX6D9te841fu8qqqKzMxM6urqTuv3254h7yN21tJcDSc/lvXdr4kQFpcOMz7TsW7uTPHpOp1q2pkE4y+B8r1w/AOIlNEnXwMNpVC+GzY/Cxd+W8oPr4XJV4u2TVEU5RQcO3aMt99+myVLltDW1saTTz7JkSNH+NznPjfQTVOUTtE+2308Hg9VVVU88MADnHvuuQMqhJ2taH8depydUwRDHdOEY+vFL6zmKBStl/LZt4Ct3ax77kyJctgTJ8TsyTDukmhTRcMCcz4vwl5zFex4Scqbq6B48xl9HUVRzg4sFgvPPvss8+fP57zzzmPHjh2sWrWKKVOmDHTTFKVTtM92n3Xr1pGXl8emTZtOGS5c6T+0vw491DSxhwwK08SK/XBsnQhi7/0C6ouhYKH4fEWSNlr8wXpLbVEgGmNEF6k5Cut+CZgw7wsi6IFoxRKze38tpQNqmjj0UdNERYlG+5oSK7SvKX1Jf5kmas8canjbwhqoog0ihNnixFcrElcyFF5wZtdKHQUF50aXpRXC+KWyvuNlySsGcPR98PvO7HqKoiiKoiiKcpaggthQo3SnBOfweWB/IJz8pCvBERGEwzCg8EKw9oEWJXsyZE2KLptwGSRkQVs97PmHlLXWhX3WFEVRFEVRFEU5JSqIDSXczRIsA+DoeyIIxaXD6POi6+VMh8SsvrvuyAUQnx7ettph5s2yXrQeqgKhSMt2QFNV311XURRFURRFUYYpKogNJUq3g98rGrGDq6Rs0hXREQsdCZ3nEDsTrDYYsyQ6eEfGeAmHD7D9L9Iu0wz4rqnboaIoiqIoiqKcChXEhgptDVCxT9YPBZI4J+ZA/rzoeiPn941JYnviUmHEnOiyKdeCMxmaKuDIu1LWXAWVB/r++oqiKIqiKIoyjFBBbKhw8mOJkuhulNxdAJOuitZSJWRB+pj+a0POdIiPiBRpj5P8YgAH3pa2gQQT8br7rx2KoiiKoiiKMsTRhM5DgZZaqA74YR1cDb42SBnZ0QQxv5+TJ1osUHi+BOgw/VI2cj4cfRfqTsC+NyShtLcVSrZBwfz+bY+iDAF8fpO6Fg9t/sGT9DzRZcNq6UFuwW5imiZf/vKXefnll6mpqWHr1q3Mnj27z6+j9DN+n/gg98u5TYzWBrD7oSd90JkcbYbfR2ifHR74/D4aPY1RZabfpMHdAG1g9MPz7lQk2hOxan9VuoEKYkOBkm3id+VuEh8sEG1YJEl5kDyi/9sSnw6506Fku2wbBky9DjY8KUmmCy+ApFwJKpI1EVwp/d8mRRnENHv8vLmrfFDlgrt6Rh4p8X3fnjfffJNnn32WtWvXMnbsWDIzM/v8GkoMaKuHXa/0z7lNE3trK7hc8v7oLtOug7i0Pm+O9tnhQaOnkbePvR1VZvpNWltbcblcMRfELht9GSnOvh//aH8dfqhp4mCntR5qjsj60ffA54akfMieGl0vf27s2pQ7S4KCBMkYD7kzABN2vyJlph9ObIpdmxRF6Tfc7u6ZGh86dIi8vDwWL15Mbm4uNlvP5/pM08Tr9fb4OEWJRPusMpTQ/nr2ooLYYKdsp2jDvK1w+B0pm7A0uk7qqL4NV386rLaOgt+Ua8GwQsXecFCR2uPQUBa7dimK0idcdNFFLFu2jG9+85tkZmZy+eWXA7Bz506uvPJKEhMTycnJ4dZbb6WyshKAO+64g6997WsUFRVhGAaFhYUA+P1+li9fzpgxY4iLi2PWrFm8/PLLoWutXbsWwzB44403mDt3Lk6nk/fff7/bx61evZp58+YRHx/P4sWL2bdvX9R3+cc//sH8+fNxuVxkZmZy/fXXh/a1tbVx3333kZ+fT0JCAgsXLmTt2rVn9NtVVFSQm5vLj370o1DZ+vXrcTgcrF69+ozOrXSN9tne89xzz5GRkUFbW1tU+XXXXcett956RudWOkf7a+85evQohmF0WC666KIzOu9AoYLYYMbdFI5AWLQBvC0Qn9XRN6x9NMNYkDFOojYGSciCwkA+s30rwuXFm2PbLkVR+oQ//elPOBwO1q1bx1NPPUVtbS2f+MQnmDNnDh999BFvvvkmZWVl3HTTTQD88pe/5OGHH2bkyJGUlJSwaZNoxJcvX85zzz3HU089xa5du/jWt77F5z//ed55552o6/3Hf/wHP/7xj9mzZw8zZ87s9nH/+Z//yS9+8Qs++ugjbDYbX/jCF0L7Xn/9da6//nquuuoqtm7dyurVq1mwYEFo/7Jly9iwYQN/+ctf2L59O5/5zGe44oorOHCg95Ffs7KyePrpp/nBD37ARx99RENDA7feeivLli3jkksu6fV5ldOjfbZ3fOYzn8Hn8/Haa6+FysrLy3n99dej2qb0Ldpfe0dBQQElJSWhZevWrWRkZHDhhRf2+pwDiWGamvSpJ9TX15OSkkJlZSUZGRmnP+BMOP4hlO0Cnwf+9YjY7c/8LIw6N1wndRSMH6CXe1MV7Ak/uGmrh9WPgN8DC74UNp+ccKkEF1F6hMfjYcWKFVx11VWDyr9I6T6tra1s33uQPY1xg+pv2N5HzO/3U19fT3JyMhaLhYsuuoj6+nq2bNkSqvPoo4/y3nvv8dZbb4XKTpw4QUFBAfv27WPixIk88cQTPPHEExw9ehSQ2dD09HRWrVrFokWLQsfdddddNDc388ILL7B27VouvvhiXnnlFT71qU/1+LhVq1aFBJwVK1Zw9dVX09LSgsvlYvHixYwdO5b//d//7fAbFBUVMXbsWIqKihgxIuxfu3TpUhYsWBCl0eoNX/3qV1m1ahXz5s1jx44dbNq0CafTeUbnjBktNf3mI+Y3w347lj70EdM+e2Z99p577uHo0aOsWCETqY899hi/+c1vOHjwIEZP/k4DRF1b3ZDyEdP+eubPWJB37EUXXURWVhavvvoqFkv/6ZdaW1s5cuQIY8aMweVyRe2rqqoiMzOTuro6kpOTe3ReDdYxWPG0hk38TnwoQo4rVaIURtLXyZt7QkIGZE4Ia+2cyRKs4/C/YO/rYUGseAsk5/fMMVtRlAFl7txo8+Nt27axZs0aEhMTO9Q9dOgQEydO7FB+8OBBmpubufTSS6PK3W43c+ZEa/LnzZvXq+NmzpwZWs/LywNkNn/UqFF8/PHH3H333Z1+vx07duDz+Tq0u62trctJtn//93+PGnA0NjZ2Wg/g5z//OdOnT+ell15i8+bNQ0cIG8Jon+1Id/vs3Xffzfz58ykuLiY/P59nn32WO+64Y0gIYUMV7a8d6ckzFuALX/gCDQ0NrFy5sl+FsP5EBbHBSvku8Hsl6MXBgF/BuE9Eh+9NzoeEAY6YM2IOVB+WcMcg2rlj66C+WKI95s2SJM81R/s3x5miKH1KQkJC1HZjYyOf/OQn+clPftKhbvDl3J7gS/T1118nPz8/al97wSTyej05LlLTGBw0+v2SXiMuLq7TdgWvYbVa2bx5M1ZrdJjpzgZCAA8//DD33Xdfl+eM5NChQ5w8eRK/38/Ro0eZMWNGt45Teo/22Y50t8/OmTOHWbNm8dxzz3HZZZexa9cuXn/99dMep/Qe7a8d6ckz9tFHH+Wtt97iww8/JCkpqVvHDEZUEBuMeN1QvlfWT26FlmqJUhhpkgiBSIUDjCMBsqZIUJHg9tglkuB53xvSRsMCJ7dA6mjJRaYoypDjnHPO4W9/+xuFhYXdjtQ1depUnE4nRUVFLFmypNvX6u1x7Zk5cyarV6/mzjvv7LBvzpw5+Hw+ysvLueCCC7p1vuzsbLKzs09bz+128/nPf56bb76ZSZMmcdddd7Fjx45uHav0Hdpnu99nQczSnnjiCYqLi1m6dCkFBQU9artyZmh/7X5//dvf/sbDDz/MG2+8wbhx43rc7sGECmKDkYq9EqbeNOHASikbcxFYHeE6idmQ3PkMSczJnQGV+8SXDWDsRXDkPWgshZKPYcQ54TD8GUP7hlGUnhJvt3DFtGxcTtfpK8eIRFfPH/1f/epX+cMf/sAtt9zCd77zHdLT0zl48CB/+ctf+J//+Z8OM54ASUlJ3HfffXzrW9/C7/dz/vnnU1dXx7p160hOTub222/v9Fq9Pa49Dz30EJdccgnjxo3js5/9LF6vlxUrVvDd736XiRMn8m//9m/cdttt/OIXv2DOnDlUVFSwevVqZs6cydVXX93j3yjIf/7nf1JXV8evfvUrEhMTWbFiBV/4whf45z//2etzxhRnsvhk9Qd+E09DA66kpJ4ndO4h2md7xuc+9znuu+8+/vCHP/Dcc8+d0bliTaI9kctGXxZVZvpNGhoaSEpKGpCEzj1F+2v32LlzJ7fddhvf/e53mTZtGqWlpQA4HA7S09N7dc6BRAWxwYbPKwE6QJIiN5aCzQWF50fXy53Z8diBwu6CnGlw8uPAdrxoxfa/CQdWiyAGULod0seqr5hyVmG1GKTE2XG5Bk+wjt4wYsQI1q1bx3e/+10uu+wy2traGD16NFdcccUpbfMfeeQRsrKyWL58OYcPHyY1NZVzzjmH733ve6e8Xm+Pi+Siiy7ipZde4pFHHuHHP/4xycnJUZG1nnnmGR599FH+3//7fxQXF5OZmcm5557LNddc0+1rtGft2rU88cQTrFmzJuS0/ec//5lZs2bx29/+lq985Su9PnfMsFj7JXkyAH4/pscCccn9biGhfbZnpKSkcMMNN/D6669z3XXXnfH5YonVYu0QHMPv90MbJDuTh4T/kPbX7vHRRx/R3NzMo48+yqOPPhoqX7JkyRmHxh8INGpiD+n3qIkV++DYelnf8BuoOgBjL4apnwrXiU+P3h4MeN2w82+S7wwk9P7qH4pmb8GXIXuKlI+7GNIKB6yZQwmNmjj0OVWUpcFE+6iJitJfaF8b3FxyySVMmzaNX/3qVwPdlDNG+5rSl/RX1ETtmYMJ0wxrw+pPihCGAWPa5UYYTNqwIDZHtM+aIwFGL5b1gyvD5SXbY9suRVEURVFOSU1NDX//+99Zu3YtX/3qVwe6OYpy1qCC2GCi7gS01sn6kUBCvbxZ0SYirpTBq1HKmiRmlEHGXgyGVaIqVh+RsuYq+Z6KoiiKogwK5syZwx133MFPfvITJk2aNNDNUZSzBvURG0yU75bPtkY4sVnWx14UXSdn+uD1sbLaxQTx5FbZdqVAwXwo+kC0Ygu+JOUl2zTBs6IoiqIMEoIJghVFiS2qERssNFeLOSJIHi7TC6mjorVfNtfgjzqYPTU6uuO4SwBDhMz6YilrLIeG0gFpnqIoiqIoiqIMBlQQGywEfcP8Xjj6vqyPuSi6Tvbk6ITOgxGbQ9oZJCFLzCsBDr8TLg9+X0U5C9CYSIqiKIoydOmv97gKYoMBd7P4UYGEgHc3gCsVRswK17FYIWtyZ0cPPrKngSXC6nXcJ+SzeDO01ct6bVHYH05RhinBaJfNzc0D3BJFURRFUXpL8D3e11Gs1UdsMFB1EEy/rB//QD5HL5JAF0HSx4E9LvZt6w12lwTuCGq9UkdB6mioPQZH18OkK6S8fA+MOnfg2qko/YzVaiU1NZXy8nIA4uPjMQahj6ff78ftdtPa2qphnpV+RfuaEiu0ryl9gWmaNDc3U15eTmpqaqeJtc8EFcQGA5X75bO5UoQygJELouvkTI1tm86U7KniFxZU5Y5dAlueg2Pvw4SlojGrPAAj5oDNObBtVZR+JDc3FyAkjA1GTNOkpaWFuLi4QSkoKsMH7WtKrNC+pvQlqampofd5X6KC2EBTXwJtDbJetFE+syZHh6xPzo/eHgo4EyXQSDBsfd4sMbdsrYWTW0TQ9HslgXXeIMyLpih9hGEY5OXlkZ2djcfjGejmdIrH4+Hdd9/lwgsv1OThSr+ifU2JFdrXlL7Cbrf3uSYsiApiA01QG2aacPxDWW9vrpc1RHN6ZE8LC2KGFQrPh73/lKAdQY1f+R4Jya9mA8owx2q19tuD/EyxWq14vV5cLpcOWJR+RfuaEiu0rylDAR39DiQ+jwStAAnW0VYnIeqzp4Xr2OMhpWBg2nemJGZBYk54e9QisNgljH3QBNPTDDVHBqZ9iqIoiqIoijJAqCA2kNQWiXkeiLkeQO5MSYwcJGP80NYW5UQIlY4EGDlf1o++Fy6v2BvbNimKoiiKoijKADOER/jDgKDZnumHko9lPf+c6DqZ42PapD4ndRQ4k8LbY86Xz9Id4VD2jeXQVBX7timKoiiKoijKAKGC2EDhaRUTPRA/MXeTaIwyJ4brJGSBK2Vg2tdXGIZEUAySNALSxojwWfRBuFy1YoqiKIqiKMpZhApiA0VtUTh3WMk2+cydBUbEnyR9bOzb1R9kjI9O8Dz6PPk8tj78G1QfBq879m1TFEVRFEVRlAFABbGBIhikwzShbKes580I7zcMCf8+HLA5RBgLkjdLgpC01krURBBfuWAAD0VRFEVRFEUZ5qggNhD4PNBwUtbriiSPmNUJGRPCdZLywBE/MO3rDyJD8FvtULBQ1o+tC5ereaKiKIqiKIpylqCC2EBQdwL8Plkv3SGf2VOizfeGizYsSHx6dCj70Yvls3w3NFfLemsd1J+MfdsURVEURVEUJcaoIDYQ1B0Pr5cGzBJzZ0TXGaq5w05FpFYsISscmKRofbi8Yl9s26QoiqIoiqIoA4AKYrHG74fagCDWUgONpYAhGrEgCVnDyywxSNoYsMeFt4NaseObwkE7aoskoqSiKIqiKIqiDGNUEIs1zZXgC0QHDGp/UkdL8IogqaNi365YYLFAZoQfXM4MCdnfVhf2DzP9UH1oYNqnKIqiKIqiKDFCBbFYE+kDFRTEIk32YPgKYgCZEd/VYoX8ebIemVOscn9s26QoiqIoiqIoMUYFsVgTFMRME6oCAkekIOZIhLjUmDcrZjgTITk/vD0qED2xbCe4G2W9pRYaK2LeNEVRFEVRFEWJFSqIxRKvG5rKZb3+BLibJGx92uhwneQRA9O2WBJpnpg0AlJGiUniiY/C5aoVUxRFURRFUYYxKojFkoYS0YRB2CwxYzwY1nCds0EQSx0FNld4O6gVizRPrD4s+dYURVEURVEUZRiiglgs6Y5/2NkgiFmskDEuvD3iHMmh1lgqURMB/F6oPjIw7VMURVEURVGUfkYFsVhSXyyfPrdofKBjbi2bM/btGggizRPtcZA3S9aPa9AORVEURVEUZfijglisaGuQBSQ8u+kDVyok5oTrnA3asCBxaSJ4BikImCcWbwmH92+qkFxriqIoiqIoijLMUEEsVnRmlpjZ3iwxn7OKzInh9YwJEJcO3lYo2R4urzwQ+3YpiqIoiqIoSj8z5AWx3/zmNxQWFuJyuVi4cCEffvhhl3V37drFDTfcQGFhIYZh8MQTT8SuoUGzRICKTsLWW+3RGqKzgfQx8r0BDCOsFYs0T6w6BH5f7NumKIqiKIqiKP3IkBbEXnzxRe69914eeughtmzZwqxZs7j88sspLy/vtH5zczNjx47lxz/+Mbm5ubFrqGlCfYmstzVAQ0A7FqkRSsoFy5D+c/Qcqx3SxoS3CxbIZ9VBaK6UdW9rOICHoiiKoiiKogwThvTI/7HHHuPuu+/mzjvvZOrUqTz11FPEx8fz9NNPd1p//vz5/OxnP+Ozn/0sTmcMg2I0VYb9noIBKJLzJblxkLPNLDFIpDAalxY214zMKVZ1KLZtUhRFURRFUZR+xjbQDegtbrebzZs3c//994fKLBYLS5cuZcOGDX12nba2Ntra2kLb9fX1AHg8Hjyebua5qj6G4RPzOkv5HiyAP3Mifl/Y5M6My4Lunm844UzFcCRBSy0ARv5crJX7MI9vwjfuUqlTcwyzuV6iK55FBPtXt/uZovQS7WtKrNC+psQK7WtKrDiTPjZkBbHKykp8Ph85OTlR5Tk5Oezdu7fPrrN8+XJ++MMfdihfs2YN8fHx3TpHbt0WnJ46ME2mlu7GARxpsNOwcycAXouT4tJ1fdbmoUZySwlpTaL1svitTDNsWFuqOLJ5NU1O+fvWHG6mPm7UQDZzwFi5cuVAN0Fpj+nH6vdg9bdh4MfEgmlY8RtWfBYHGEPT2ED7mhIrtK8psUL7mtLfNDc39/rYISuIxYr777+fe++9N7RdX19PQUEBF198MRkZGac/gc+Nsb0KTD80lmE70YxpsTH6nE+AJRCoInMCs0Yt7qdvMATwNGPsfFl86QCDvVC8iXHOavzTL5E6cWmYU64awEbGHo/Hw8qVK7n00kux2+0D3ZyzF9MPzVXQWI7RVAHNFeA+xUPXsIArGVxpmPHpYnYclxa79vYC7WtKrNC+psQK7WtKrKiqqur1sUNWEMvMzMRqtVJWVhZVXlZW1qeBOJxOZ6f+ZHa7vXs3dlMJWAzACtUSit1IH4fN7grXSRsFZ/NDwp4CaaOh7rhsj1oAxZuwlGzDMv0GCerhrpcloRvC7zCj231N6Vuaq8U/sfoQeFqi91mtpz7W3SBLfRGUfgzOJEgpgPSxkDh4o6NqX1NihfY1JVZoX1P6mzPpX0NWEHM4HMydO5fVq1dz3XXXAeD3+1m9ejXLli0b2MZF0ln+sKx2+cOS8mLXnsFKxriwIJY+XpJdt9ZC+S7Imy3lVQfPSkFMiTE1x6B0uwTZicTvg/oTUH0YGkqhrVGioPpaweoAqwsccZCYK8nZk0eGha62BijfLUtCJmRNkfQNltMIdIqiKIqiDFuGrCAGcO+993L77bczb948FixYwBNPPEFTUxN33nknALfddhv5+fksX74ckAAfu3fvDq0XFxfz8ccfk5iYyPjx4/unkcH8YX6fCBIQncg5IRMitWNnK6mjwOYEb5vkFBs5Hw6uhOObwoJY9WEpP9vC/Cuxoe4EFG8RM8QgPg+U7oATm6DqAPi93TjRjvBqXDrkzpAlfayYLTZVQtN7ULwZ8mZJ5FDt04qiKIpy1jGkBbGbb76ZiooKHnzwQUpLS5k9ezZvvvlmKIBHUVERlogBzsmTJ5kzZ05o++c//zk///nPWbJkCWvXru37BrY1QqtEWaTmqISwdyTKbHmQyPWzGYtVcopVBAKtjJwnglj5bvkdnYmSU6zuuJgxKkpf0dYAxzZEJ11vrYODqySNgjfCLNEeL/00tQBcKXI/2+Pk3va2Sl9tKJFz1Z+Elmo48o4s8RlQeCGMWgg2F3iaoWgDlO2E/LmiIVMURVEU5axhSAtiAMuWLevSFLG9cFVYWIgZCAgREyLNEisDZomZE0XjE+RszR/WGRnjw4JYYg6kjIK6Iji5GcYskfKqgyqIKX2DaUp/O/FRWNPV1igC2NH3wQyUxaWJJnbEOZJ4vbv43GKOXLpDluYq2P132LcCxpwP45eCLU4EwcNrJcfgqEUS6ENRFEVRlGHPkBfEBjWRM+yd+YdZbJCQHds2DWYSs0TL0Fon2yPniyB2YlNYEKs7AZ5WNedUzgx3s2ipGkpl2zShaD3sfg18gbyB6WNhwuUdJ0+6i9URNkv0uaUfH3kXGsvg4Goo+kDOP/o80QjXn4Tdr8KIOZA9Vc0VFUVRFGWYo4JYf2GaYqIEYoJUWyTrkf5hSXk62GpPxnjxnQHIP0c0CHUnZMCclCuhxKsPQ87UgW2nMnRpLIdDa+S+BGiuhG1/CftwpoyEyddA1uS+u6bVIQLX6POgdCfsfU3asev/4Nh6mP058ZP0e0Vgqy2CMReKSa6iKIqiKMMSFcT6i+YqCTwBUHkAMCExG+JSw3XUP6wjGePg5BYRZB0JkD0NygLBEqZ8UupUHVRBTOkd5Xvh+EYR6AFOboVt/59orCx2EcDGXNB1QmZHgpjNJmaL9tbmksX0SWAPTzO01Ejo+/qT4jfWntzp0n+LNsC+N6CxFN5/HMZeDJOulHQNjWWw5zUoPF8ENEVRFEVRhh0qiPUXkWaJIf+wdmHrVRDriCMBkkaEf7+R8wKC2Ecw+WoZIDdXyUA3Pn1g26oMHUxThPmyXYFtP+z5Jxz+l2ynj4PZt0B8ZsdjrXYxU8wYLwLYKUkXjVrwmo3lEqin6oAIakEMi2jH8maLVqx4s7SlfBfMvVO0v942MWHMmS7BPFR7riiKoijDChXE+otO84dFmDo5EqO1Y0qYjHFhQSxnWiCgQZ1oFoM+dlWHVBBTuoffD8fWhU0PPS2w+dnwBMm4T4gmrL0WzGoXX62caZJaoacYBiTlyJJ/jvTZ0h3gbgzXcSTAnFvFL2z7X0UT9v5jMOMz4iMJElWxpQbGXgQ2R8/boSiKoijKoESnWPsDn0dmwiGgvamSQV7GuHAd1YZ1Tepo8akBCWiSf46sn9gUrlN9SAbYinIq/D7RNAWFsLYGWP+kCGFWB5xzO0y5tqMQljkBpt8ofa83Qlh7rHbIngzTPw0FC8ScMZKc6XDhd0Rr7nPDx8/D9r9I+0EmJvb+M5wOQ1EURVGUIY8KYv1BQ2nYByWoDUsrjB58JefFvFlDBqtNfq8gQc1A6faw352nJdr8U1Ha4/eJaV/tcdluqYZ1v4SGYnAkweJviCYqEkciTLhMfLP6IzKnxSoatuk3SDTGSJyJsPDLMPFK2S76AD74LbibZLu1ToSx4CSPoiiKoihDGhXE+oPO8odltfMPS1KN2CnJGB9eTyuE+CzRFJRuD5cHtRyK0h6/X3JzBYX1pgpY9yuJkBiXDud9HVLa5fBLGw1TP9WxvD+wOaDwPJh4BTiTwuWGBSZeDgu+DFYnVB+E95+AxgrZ722D/W+FhUtFURRFUYYsKoj1B/Un5NP0Q8V+WY/0D0vI1DxYpyMpJ3qAWhDQih3/MFxWWxTWkClKENOEY++HU0a01MCG30BrrUQ8PO8bkJAVfUz+XPEVi7UPVnKeCH+RZssA2VPg/G+K0NhcAesel6AfICHuD62GSp2IUBRFUZShjApifU1rXdiPo+YIeFvEIT+lIFxHtWHdI1Irlj9PPqsOyMAaAjnFjsS+Xcrg5vhGCYwB4hP2wX+LEJaQDYu+JmHng1hsMH4p5M0ckKYC4j825kIovEDaEyQpD87/lvhMeprlewRNnU0Tjr4n4fgVRVEURRmSqCDW19RF+C2V75bPrMnRwQBiYfo0HIgUxOLTIT2wHUz4DGqeqERTtgvK98i6pwU+eErMEuPS4NyvRCdItjrEDDC1oPNzxZrM8ZKiIVIT7EyCRV8V02afGz78PZR8HN5ftCH8fRVFURRFGVKoINbX1J0Ir5cFZquzI5IPWx0yM6+cHmeiaAWCjAxoxU5EmCc2VUBLbUybpQxSao+HTVdNH3z0dDgwx7n3iDAWxB4vyZNPmxcsxsSnSyj9xJxwmdUB8++WnGOmDzb/KXoyougDFcYURVEUZQiiglhf4vNCQ4mst9bJIBCi/cOSR2hi1p4QqRUbMVtMtxrLw/4/EDZDU85emqslOEeQHS+LGavVCef+e7RPmD1ONGGDNQ+d3SVBPCL7vsUG59wGBQsBE7b+L5zcEt5f9AGU7Y55UxVFURRF6T0qEfQlDSfDYeuDM9Spo8VHLEjKIDGDGiqkjQ77zdhckDtD1tvnFDPN2LdNGRx4WiVMvd8r24ffEZM9EOElOcIU2OaU8PSDPZm6xQJjLgj3dxDz5pmfhZEBYWzLn6FkW3j/8Y0qjCmKoijKEEIFsb4k0iwx6B+WPSW6jvqH9QyrvV1OsQXyeXKLmGmB5FkKaiKVswvThCPvgLtRtsv3wO5XZH3qpyRnVxCrHcZfOng1YZ0xcl44jx6AYcCsmwNlJmz5U3RKh+Mbw5FaFUVRFEUZ1Kgg1pcEBTHTB5WBwVCkf1hCpphFKT0j0kQra5L4/Libov1iNGjH2cnJreG8fc3VsOU5wIRR58LYi8P1DEO2E7M6Pc2gJne6JJgOYlhg1i0Sct/0w+ZnoXRneH/R+nCoe0VRFEVRBi0qiPUVzdUiHICEVPe2giMx2hQxWbVhvSIpV35LkEFo/lxZP/FRuE7NMfB5Yt82ZeCoPR42zfN7YfMzki4idTRM/0x03YJzh7Y2OnNCR2Fs9r/BiDlhYSw4GWGaYp4ZmVheURRFUZRBhwpifUWUWWJAU5M1WWbig6h/WO8wDMgYG94ORk8s3SkhykEG4jXHYt82ZWBoa5Q8WkF2vQJ1xyUa4tw7wGIN78uZBtmT259h6NGZMDbnVvEjM72w6X/C6TNMv/jNNVYMTFsVRVEURTktKoj1FZ0JYpH+YTaXmCYqvSPSPDFlpIS1N73ROZXUPPHswDThyLvgbZPt4i1w7H1Zn3NrdJj6lIJoH6uhTuYESfwcxLDAnNskx563FTY+Bc2Vss/vhYMrwwnQFUVRFEUZVKgg1hd426CpXNZbaiV6IkSHrU8ZGa0dU3qGKyU651N+MKdYRPTEhhLRlCjDm9Lt0Fgm683VsOOvsj7hsujJD2eSRB4cbvdd5vhoYcxqhwVfhKR8cDfAB7+FtgbZ522DAyvDZtOKoiiKogwaVBDrC+qLw+HTK7oKWz+E/VMGC+njwutB88Tqw2ENAKhWbLjTWCEBOkDM7z7+X9EEpY2R3FtBLFYJzmFzDkw7+5vM8RKQJIgtDs79MsRnQHOVaMa8AbNdd5MIY173wLRVURRFUZROsQ10A4YFQb8MiDBLjIiWaBgaqKMvSB8DJz4Ev080ZJkTJTrlic2SoBckp9iI2QPaTKWf8HkkVH1w0uPgahHErU6Y83kx0wtScC4kZAxMO2NF9hTReAUFU2cynPsVeP8JmRz66BlY+GUwrGKeeHiNhO/XhPJKrPF5oa1e0ky0NJDSfATj+EaZCvZ75ZluGIAh97HVATaHmPTbXKLddiSCI36gv4miKEqfooLYmWKa0WHrK/bJeqSJVEL28J2ZjyU2p/j8BENzj5wfEMQ2hQWx1npoLI82Y1SGByc2hU3uaotg/xuyPuNG0QQFyRgPWRNj376BYMRsEcaCeQvjM0X4Wv9ruTe2/1VC3YNEUTy2Tsw1FaW/8LZBU0VgqYLW2vB9Cxg+H6nNR6EiEazWLk/TKRabJGOPSxdf0IQsufd1ckFRlCGKCmJnSlOlmEaBhK33tXUMW58ycmDaNhzJGB8WxHJngvUlMU2sORpO/Fx1UAWx4Ub9yfAkh88jJommH/JmRwfjcCZFm+ydDRQskOdO1SHZTimQyJEf/kESPCdkwfilsq/qIDgTJey9ovQFfp/4bNafFE1sc3U/Xssr79ymCHN0i02e94nZkJgLiTkqmCmKMmRQQexMqe9O2HoVxPqM5HxJiu1pEQ1Z7kwo/ki0JUFBrPoIFCyMDmGuDF18Hji6Lry9/03RejqTYUZEvjDDAmOWSPCKswnDgNHng88tudVATKOn3wA7X4a9/4T4dBhxjuw7+bEkRc8c3+UpFeWU+H0idNUclT7nO4X/oc8NDaUiPLVUYWmqorDyJJaN74KnFfxuMAH8cg/bnGB1gSMOnClihh6XKgJWYraYKka1xRsQAgNBsqx2eU+kjgq8L9rVVxRFGUSoIHamRPmH7ZXPSLNER4IMgpS+wWKB9LFQtku2R84XQax4C0y7XmZHfW4xXUsfM7BtVfqGE5vEtwTk73roX7I+46bogDgjZkNiVsybNyiwWGDMRWKuGdQWFJ4v5mFH3oGtL4ArLXxPHFsnExoaREjpCc3VYvJadahr4auhFKoPQtVhmahsrCAgaQHiFpYK0NLLNjhTIG2UBOhJKxQNcOTki88jAmLNUZmkSMyRd0ZaoboIKIoy6FBB7EzwtMpAB8QRuSEglGVNCtfRIB19T8b4sCCWOUFezG114ieTO1PKqw6pIDYciDRJ9Hvh4xcAE/LnQu70cL3EnPDf/mzFahMTxL2vh31ypn5KBs9lO2DTH+D8b4mpoumX4B2TrtKJIuXU+P0SFKdiT7RJYBBvG1TslWdy+e7wpEkkjkS5R+PT8btSKa5sZEThOKzOBLA4RBNmGKJp87WJub+nGVrqoLUOWqrF/LGtQZ71pTtkATk2pUC0wNlTZD1okWKaIhg2lELRB2KdkjFO6qjFhKIogwAVxM6E+ghtWEVAG5ZSIC+dIGqW2PfEBxy1W2rkJZw/Fw7/SzQnwcF4/QkxX7THDWxbld7j88Kx9eHtA29DY6ncX9M+HS632ET7M9zyhfUGe5wIY/tWyADZsMA5t0rwjrrjsPH3cP43RZPo88DBVTD5GjDOMnNO5fQEBazyvSIUReL3iSl+8SYo3QWmN7zPYhftU8Z40Vwl54sZcehQH1VtO8nLm97zYB2eZqgvCZhEHpXPtgaoPSbL/jfk+ZA9FXJniGBmCQxzTL9o1GuLRDOWMUGC+rhSevHjKIqi9A0qiJ0JdZ34h0WaJRoWSB4R2zadLWSMDydzLpgvgljZbsmZ5EiQmdCqQ9FaE2VoUbotrNlpKBWhASRKYqRJ4sh54EruePzZSlwqjLsEDrwlA2arAxbcDe8/Ds0V8NHTEubeYpP75eAqGLt0oFutDBa8bijfJc/T9uaHzZVw9H04/mG0cBafATkzIHcapI3tP22TPV40WhkROSWbq6Fyn7yDK/aJRu7Eh7LY4iBvpkzWZYwPp7jwtkHZTlmS8sSKJXW0BvlQFCXmqCDWW0wz7Bxs+sPmU1kRglhiztkXOCBWZIwT3zDTlBdpcr5oKE9uFe0ISE4xFcSGJi01ULozvL3jJbnPcqZLpMQgSbkSHEeJJikHCi+Aw2tl25kMC74kOcaqD0lY+9mfk33NVRhH3wvnZ1POTnweMS0s3dlRAKvYJ32pYk+4zJkkAk7+/J75GhoWvBanmMg64kRos1gD/c8UU0hfmwhL3lb5PBXx6TBqkSx+H9QcFi3dya1ixnh8oyzOZIkwOmpRdLqLhhJZHAkykZo5SXKYKYqixAAVxHpLc1U4bH3dCZkdtMVB2uhwHTVL7D/scZA8UsytQIJ27C4WLVlQEGuulkV9YIYWpgnHNojgBTKzXX1INDvTbwjXs9hg9HlqktgV6WNE4xXUHCflBcLa/15+08TscFj7uuOkNdUOVEuVgcTvF43SyY/D7zSQ+7B0OxxcGW39kTVFnrHZU6KTqLfHMMK5vuLSxQTQlYJp2CkuWcGsSVeBvRsTlV63aLna6mWCprla3r/upo51LVYxOcyYAFOvFd+24s1Qsk2OP7hKlqxJMGqxTNQZAe2duwlOfCR1MyZAzlQRNhVFUfoRFcR6S8PJ8HrQLDFzQvSLSSOS9S8Z48KCWP45sPtV8RNorAhHz6s6CPELBq6NSs+pOiiO+SCDo92vyvqEy2VgFyT/HDVJPB250+U3DCZ8zp4i/nW7/iZh7ROyIG8WAMmtJ+RZln+WBz05m6g/Kdqiltro8rJd0j8aSmTbYofRi0TLmnCKyKSuFJmATB7RtUWIx9OzNtocYEuXCbVgihKAtkZ5TjSWielya130cYZFzBEzxsP0G8UMsWi9aPeCizNZEpyPWhw2dw5qBiv2iLlizvSzNxqroij9jgpivcSoL4HgO6Yz/zBHYvSgUel7UkeJlsTnlhdq1mR5eRZvkmhwIDOi+fPU9n+o4GkNa3BABoPuJknUOu6icHl8hjjkK6enYAG4G8I5xsZcAE3lcPQ92Pq/8pxKkkkjo3gTJKTKvaUMX1rr5T6rLYourzkKe16T5yaIlceYC2DMhdFBqCKJSxMBKa1Q/BNjhTNRlqC/WGu9TMzVHpegPpGmtharTDjkzRJtWtEHsrTVS5TRAyth5AIYuyQsaJpmOAx+cr74miXlxu77KcqpME2xGolcMAIRSAOLjnuGBCqI9ZaWKrAnikli7TEpi/RVUW1Y/2OxivlV0D9v5HwRxE58BBOvFNMYT4v4jqUWDGxble5xYlPYJ6T6CBRtkPWZN4VNiAxDTRJ7gmFIout9b8ggFCTnXlOFRMXb9D+w+JtSbppw+B2ZyEjI6PKUyhDF75dUBiXbxJ8qSFOFCGDBkPAWmwhf45dKgIz2WB2Smytz4uDpJ65kcE2DnGnyDKktkoBNQa1ekPgMmHw1TLwCTm6BQ2sl9cyx92XJnQFjL5bvF6S+WJbEHBHm9P2u9DV+v5jguhtl3OJplolJT7OYDPvcgcUjn5H376kwLDJWsjpFQ21zyv1rdUhydHscOOLBnhBYT9DUDjFGBbEzpXI/YMqMfaQGTPOHxYaM8WFBLHe6PGxaqsVhOz0wU1p1UAWxoUBDqfytQGb3drwk6wULowdFWVMGz+BvqGC1B3KMBTSMhgXm3g7v/xIaS7F+9EcsyRdLXb83ENb+atE4KMODxgpJ5N1SEy7zeeDgavl7m17AEA3qxCs71245k0TQyRg/uANR2ZziKpA5Qfp79WF5tkSaYFqsMnk3cr68xw+vDQQrCeQoSx8LEy6LnmBtLJM0GgmZIpCp5ljpKZ5WuQeDS1tDWADrj4BJph98frnXu4vNFdA4J4m1kTNZ1l3JmhKoH1BBrJeUexpxe0wsFXvAasWSNR48TRiGgdWwYnMlY/W2YDNs2Cw2DJ297x8Ss+Xh0FovMzx5s+HERtGsBAWx2iKZIbU5B7Spyinw+8VUKMiRd8UP0x4PU64NlzsSYMSc2LdvOOCID+cY83nE7CwQ1t5oKGaU9x0wZwFWmYU9uEo0YxpBbmjj80gEwfLd0QO98t2w829hLWnWJJh6fefmd3FpMGK2+EwNtXeZI0G0XLkzoLFctMA1R6M1CpkTZWksE4Hs+IcivG18SoStCZeJr1iQpkoRYOPSRCBLKxx6v4vS/7TWi7a5uSoseHla+ubcpi+gGfMDZjjqKIhG22Lv/WSJt1WWzhK4Wx0ySeNKlf4flybbKqD1GhXEesmGpmMkGnHQXATxLkhIhIZDstOVAsdXRdW3GlYR0Cw2rBYrdsOO1RLYDpTbLDZshi1UbrPYcFqduKwu4mxxOK1OrKoy7kj6OBlogOQUO7ERTm6DaTfIg8j0y4s3a9KANnMwYpomPtMni9+H3/SHtv2mH6/fi9/04zf9mKaJiSnb+CXStOkPlZmYmKYZ2tcpXYxVjOpjUC1J0S2eFowjKzHsdiwTL8FitmK0tWFgYMmZjNFShsWwYMGCYRhSblhCkyAWwxL+tERvn/XEp4vZ1cGV8uKOz4B5X8Tc8BtSW47j3/c6TLtO6rbUyKB0/FL1NRiqNJSJL2AwHx+IX9SOlyUiIoAzBaZfH50WIkhcqpQPF0EjMVuWkQtEQ1axN/q3ScyBmTeL2eKhf0lC+doiMd9NyoeJl0LurPBvEbxHXCkBgWyM3itnKz6PCF2N5SLANFVERyE9HX4ftEZoylpqA9FCGyQwjbtJJsh8bplYNrtpmmixi2BmdchknCNB/D0dCeF1V0pAoEo/vRWEzy3fsbE8utzmCgtm8RliteJM0fuhG6ggdiZ42+SlBtGmUp2YdAQHt26/u8O+nmC32HHZXNgt9ujFasdmsYW2I9edVidOqxP7YDYlORMyxocFsfRx8iBoqZEoWUHtSdXBIS2IBYUir9+Lx+8JrXtNb3i93X6f6cPj9+Dzy6fX9OLzRwtdfvwD/dXCM/Y+r2wXfyRPpqQcSMmEpmIpj0+DlhOy9BKbYQsJbFbDisVi6Si8nUaY6/TTIoJh+7pdnW9AScmXXErH1st2+hj8M2/Guu15LEfWyu8+apHsqy+G4x/A6MUD1twgphmeBAitR0wEBCcL/ESsn2p/cOKg3Xl6c53IyQj5X2YigtcI/hco7FBuRmiqIvcBGBGzF+0tK4wuZjYM0xTf5drj0TVqjmAc/xDD58ZIiIfsaVhGzMaw2jHqD2AEzmjY4zEyxmIkpWE0H8doPhGa9DAwZL399qk+I9Z9Ph8nvSfZV7MPu80e+l6hCRUMiTlwunMH1oHQccHtyHrBCZgObckYi5E+BqPuuATcaqoI/56OBJjySRh7ERx5B+PYBvEj2/wsJOZgjF8qGkICg8zmaji0BpwfSVCP9LGhAWjwnMG+EVqP/Iz4e7fvC5Flkf0oqp7Z7nwRfSrU7yKu06F+F+dv32cjzx31HcwuvksXfTvqWuYp9nXye7T/rTr7fkF8Ph+HPYfZVLYJm1WGuz2xTury/jIMEZyaawLariqM1roOE5DBS0Wdx9MSSMNQhdFSHUqzY7jDEwJGxHmMdp8YgN1KsO91fCKYHcoNvGJ63NYMrZUR5XSoi2HFcCaDKwkjLk0m7+IyMOIzZGxrGFFHhM7RZkBTSXS5xYoRlwqugNYsLhXDmRIIJhLd6vBvZnQob/93ON3fMLLPQLt7oN0fqbP7JFDQef12/S1ITUMNvUUFsV5S4W2itbEOw2LF4kzEwI/F14qBgc3mxOH3YTWsXWoAeovH78Hj7mH43wAWLDisDtGy2VyhdYfVgcsq2x0EOatsD2qciZIjqaFEHhL582TG/8RHYUGssVzCG7tSYtIkv+mPEpiihKcuhCmPT4Sl4L42Txtb3FtoO9iGYR0Gs9FdUXs8LIS11EjOMIAR5xC6gSwWSBvb6eE9wWt6wQQPvbuH+opIoa0zYS1yYBm5HhxYBgeXwX1BjWD7wWwkUS8zCxCfhFElv7UvfSQ1adPJatoH+14Bhx1SRmECZlEZZmsFZIzvUoDwB3K+hYQR6FAvUng5leDUlQDU4UWpdI67CSoPgLs5XOZtledhQ2BSIyFdtEKuVJlZ9wZm1y0WSCmQ56nFAi0Vfd48n89Hsa+YnVU7sVoHiYWHHXBZJZx/c3X0vtyxkJUvv2nlAfA3wqFX4PhqyTWWOpqom63sA7C7xE88IUs1AgOIz+ejyl9FUUNR3/S1tibxQW+tE03V6Xy6fG3SnyIELnxdaMkcdglIZQ9orezx4k5hcwU+HeIDb7EFFqt8GhY6POxNv9zX/sASXA9q00IJ093SHncLeJrAGzSbbILWJmgthSj5whLQoCUH8gKmQlxKIKJqF2OUhnbbFkvgOwainjoSwBYPlqE9xmmoa/9Fu48KYr3k2erNWOOskJ4qBeXrwjvL3wNk4BMUbhwWBzarDYfFERJu7BZ7eH+EEBQUjOLsccTZ4oi3xRNnixOB6Az6qh8/rb5WWn2t1LnrTn9AAAOjSwEtSiNn2EKaucgBZXCAaRgGFixR5ZHLGZExPhwda2RAECvfLSr9gKrdX3kA/4jZHczwoj79vo5lnewLCkvtBSyvKQJVX2iafL7A9fBjJQYDFpOQFi3yu0X+BsHF5/dFDapD+/1dD5g7Lfe6Q7ngLBhYyvdgcTiwxGdisfixtFViASyJOViaS0L9KtIMMbhEmfYaNiyDeADkR36rAcUKWDzQVIXf9FOcmMfIBK9oCA68LiaJwYS2x8qg+aQEKVAGL3UnRRMWOUCsLZKkxn43YJFgG9mTCWlzgiRmiz/U2eoT6EqWxdMqmuDG8vDvaHWKj1jWpIBAtk9SQhzfCGW7OwpknlaJ2Fh3IpxTbRA/j5Qu8JuBROIBISoY0bdTTGirk6A4TRVS39NJ0nGQCIXOQH8LfjoSRejqC0Lh63s4iW76AxEbA2aQbYFE6q2N4K4Xgc5dL0t9hGWKYQuYN6ZGmDmmSnl7/P7AeRvDQprFEmEymRgWRIe2bNZtVBDrJfGGHYvfhx8T02LFD4ElWgXa5mujzXeqm7f7WA2rCGX2OOKscR0ENZfNFfUZrOOwOM6oQ5uYuP3uMzarPB2dCWlRZh10bnJhmiam3wt1ezADDthm1ihoqcIsegszY4LUrN8HTUeG9s1tilbU7XPL4nfT5mvD7Qt/htb97qjySOEqZLJoeqK0cQOOk8Dgvw1qtofLq7s6oGsMjM59L9utB/02gxMIdos97M8Z3I7w2wz5dLbz5+zq+EErEBpAxgQRhlvrwDAwR8zHcDdLeo6j74owZg0Euak6CFYXuAZZJEWTKL/GyEmBDmXtJlb8BLaDdQMCcntfyciJh/aTOJHrnWkBo7Yj1jvTIgbPAURN5gRN6iKJNuEBvG0Y/oh72DTlb+lrhSQXhpGI4UrCsDRjqfoYA7AYhlh1OBIx2k5IuRHWsAb9MEOf7TSwkdvAqY8LbJumSbGvGCrBZrV1ej4DA4sl4lp00SZL121s7z/a/jxdYndJbrKUgoBAVhYIiIAMbLOnSjTGyoNQuTdCINsF2dMgLUIg87ZJGo66YhHIknJ7J5CZYa1z+/4kf+qOJocdttv1x6A5YdCnN6p/dnL+qOt30q+D5+t0f2dtjWyjKf290/O0a3OoXvBcEefuoDn3Q7mnnKrjVRgBjUuk+WpnGCaiGfIEFvwRJnKhWvJH8baKBrqtEcPdFIg8GqhhA8Ma0GbZEzAccfJpd4n5X8QZDbMF3C0Y7uhWGe3+jTbhi/4W0ccZ7T47Pyby7FH7bBYMWyLEJWKQF67sbcPwtGB4msDdiNHWFIr2aHjqMTz1UE/APNIQgcqZjOFMxnAlgzMRw7BGXTvUmra6KDdUw7BiBMLpG7Z48W+zuTr9+4X6R7gg1F863Q8d+lrUvi5MdyPLguXB7eaGCAuEHmKY7Y0plVNSX19PSkoKT7/0RRKPrZDCKZ8Kz2SkjcKXlIfb5xYzQr8Hj88TGjwHy9x+d6g8WCc4cPb4PbR6W2nxttDibaHZ2xx6CPaGSAEu3hYvi12EtwR7QliYs8eRYEvAaXPisDgG7wCyKyoPyGwUQNUByRETlwbjLwvXyZkmqvQY4vP7QgJRB2EpIEy1els7CE5t3jZqG2uxOq2hfW6fu8NDo78IakCD2syQX1U7YblDWfuZ9kgi3wBet7zEAPBjNpbj9/vwOxPxO+LxBR5yPpsTv2FEa+RMX2hwEBlYZDCarwXNELsU1joRCq2GNTSwjNQChrTLgYFqpxpmLFH3bocBfHA74IeD34tZc4zqynLS09KxmF4o2Q6+NkxnMmb2VPxG4IVlWPEnj8C02EImhEHzwsjBYHuTws4EpCghqZ3Q1GG9K+FosPg5KkOOSCGvS9+7wHjbME1kqrUT35ig2VfksRYrobyHoZrydDINA9MITzCGBn2dCEmD8XmmKEpHfC0+9nxlD3V1dSQnJ/foWNWI9ZZgLpb26mRnClaLlThLHHH0UThPE9x+N82e5pBgFhTSWjwt4fXA0uprDQlywYFLg6eBBk/PbFiDPmSRi8vqwmmL3nbZpMxldYXK7FZ7aNAYHFj2ewj/hOywIJY6Ck5+HMjTUS/qfxCTgQhBzDTNkFlhZHCLkNbI9HUIhuE1vZ0KVG3+aM1U8NPX3ehGXdGFSXnQ5DXo5xfp8xe57bQ4Q6akQdPSyM/gElneH/6NUfj9EqAjaOpRvgvqasVWfPTisElDXKqY/XT7tP5QUJKg713w7xm1bXo7lkX8fbtzfFCjGNwf2VciB1BBLYvHP7B+aafFgpi2ASQ4AAdgQt2u6Ho1O2LcsJ5jYEQFUQkGSenMFy8qKEtE3c7qdWZyHQr4EhCAOwSZCK53Fdyis3La+fhFTfZGzNY210BjaagE08SsOwG1x6TM6oSsiZjOZDnCFKsN0+7Cn5CFabGHffIifPOihGh/R6G6Q/1gtFTCWr3OhPFglNaGhgbiE+JD36PLc3dyjc7O3Vk7ToeJGX42n6m802HS0i9mXp1fOKZ01uegk+AlRAc+CU7UdNaXMQhNuHXVr4PXDgVLadffT3Vs1LU6OTZyX1Q7Is4N8j6oqqoiIyMDw2JEB3Hwe8WE1NeG6eto7WMG/jF9raIZC2qXI/djhJMi21yYNgdBfVCwlhlRP7QV/AgkWzYtVjAssh38bFc/6r4PfnZSHlm/fZ1gvU41PH4/Jn5MU/pu8JMILb3Z/pjQ+eh4PkxMv0/O4/eFz2MEf4sgRuA7hz9NLKEa4e/X/taRPeFJE0tE344OlBO+UvSkS+RzNvTcDe7rZHIm8r6Iaj7GGVkUqSDWS4ygIBaXHi60BBwZ+/xihAbWqaR2/7iAANfiEeGt2dMcEuKitj0tNHmbQvWCL6egoNHQwduyt1/DiBLMItfbC22hQAaEH0idmihEBAswMcHdGBg4AOnp+H0ezOrNYHPhM/14y/14j1hDg+oz0TT2FJthixaQ2gtQluh9NsNGyYkSJoydICamVkdI8LJb7ENPYxlJw8mwEOZplqhlACNmhYUww5Cw2T3AYrHgwEEsXOpORaRAGCnQt98OCX3t1kMmcu2CW3RYTlEvkg4z6+1f4CY0NdYRH+lS4HNjtNRhAQxHIoYzEQPx5TOsdgxXSqfmYCEztXZmaR3uc7qOStk+kElkmZVO9rc7x7DP2+jzQfVB8HjBGfDb87ZA0UZoKpPtlAIJXGSN8PkyDPFlSh4xYCbaPp+PnTt2Mn3K9P4L1mF2TK1xOgEy8lj56GzYh5jBN1XIpJ8/evBl+n3ik1dzGHxuOcIWh5k+FkvKyKgBogEYFiskZGIk5GDYnB2EpFDdzoSXTiJEdtge5rfB6fD5fOxs2Mn0wukSrbatPhSxEE9r5yNg0y/mqHUnJHhL++AazhRIzpOANvGZgWAZp8FijQgZHy/+T/b4oeM36PeJGWZQIPUElx6E5wfxPWuuCfvctdQEfFfbYdglSnJceiBqY7r8dt3FYg3/xo648Ho/+r821DXwPu/36lgVxHrJ1fX1pDQ2YY6ciJk6RaT1hCwYd3m3ZtIjw45Hzb5HzKoHB2y9JkKAS6Gb5nimRJZr9bbi9rlp9bWGTOravPIZ3NfiawmVB+u1euWzMzMxE1O+py9GvkgWJKoQPvB24TQbgUFHn6JIE7JIX6FIoagrgSoYiTK49DRsuc/ngxIoTC4cNNHFInN3dfC7CM5+GtGzSx2EAJ8bs7Ey7Ht0fJNETUzIgvQJgUGTiT8lHzMurfMQ4YOcSIGwzzTj/UhocDwmB2vN4fCOoIkv9TD6PEgeGd6XmA2Z42Pe1rOetiYJFhE5CGoslYTovjaZyBgxR0KoR+JIkL9XTwY0QxWD0IRAvwQ6SsiBTJ/kaasvlhQcQbKnQ9ZkCdZRvleCEpRsh8pDkD1Fco1FDt5bGiQYQnyGRFp0ngV/n1jh92P3NWJUHxI/WF8XVgl+jwT7qiuG+hIwI+oZdknpkZQnPn72+NNf1xGMCpgkwcLsCUNbKLZYw3nHIrunPxjcozmc56ytscMERQh7AqQkQErwPSKT51GRJVtq5PdvKpcliNUBcRlhwSw+vevgJn5fIP9aOyWC1RYQyFziC2pzgU20mQzgGEsFsV7iqC/GYQHSx4Qj0yTnd+8m7QEen4cWX4sIOBECT1BQi/QzC5WdiQBniOYmsQ80e8GZ+qhIhBF5rEKJhM12ZRH7/KZftGJGF2YM7U0WfG6M6iMy22iaGMc2YPi9GCNmYY3LwGpYsLlSsGVOijLLG+xR9k5FlABpsWE3ok0O23/PSHOqSHOrrrSTfRbZMsixDZAUGMDXF8PxgKnbnE9DymhZt7lg+g2dzmBFCWWdhD/vKkBDZ5EyO/NP6nBsVxE2Iz6HDYlZMkNZF4iIlTEBWhug+oBoW8YliN8lSFQ5mxNSCwauvb0gaH7YQZPXrjxSo3eqIBXBzy7zVYVtXzo1uersmMh9EDGZUXUY6osw7elgDziRF62DoxK110zMhinXYsZHWGoYBqSPF+HAYom2Lmj/eap93QlE0o3zeb1enIaTBFsCFmu4PcHvGRmwpIMlxGDCYoWUQACOxjIZxAdN3AwbZE6SoB9Vh6Fij2gDij8KRFmcIuk4gs9U0wwkAa6UCHpJI2SgOYgG75GTa+01dKH9nfTdzrR1oToRZl6dafY6Mxvr6tqhba8bo7kKGsvwNlbgbqkitzURq8UFlvDA3fS2QM0xqDkCdSfEhC6IPUGsMdILRQDr5N0X1RsdieFkxnFpmIGcZV0GeYg8+nQa2DM5R2e55CLXOwkR0a1zhKKJIgJSIC1QqM2elnASancjprsRfJ5O7mADHEmypI4Of5m2OmgKCGct1dBSF0gkXSJLEFtcQDhLk8WVdurIkz4v+OqB+o77rPZwqgCrI5AuwAFWF0ZwvZ3pK4T7oNXovSCnglgvMTxN4LKJ8BWkH0I7260SGj7Z0TPnv2CI9UhfpVZfawcfpkhNV19HzQv6Z9gsMe5mXsIzIYkjJC9VfRWkjJMynwm2BLA7Y9uuABYsoXD/Xflo2Sw28EO9rZ552fNwOVwd6kVq7oYMLbUymx9kzz/kM292xIMYyJ/bpRlB+0Stg4EO0fhOIRB2JfgF/Wfa588Knj/SHyZywNqprwwdX55RtLPp9xk+nIaTRFsi1uypYrrYVC4TGgULwd2Ape4kHH4Xy5RrwJEoQ6PGKoz4HIyU/C7NpYIDqpDZYITg0pkAdLr9XQlI7aOtdlV/SOJ1Q9F6qDkBzoCQ5W6CrX+Gir2yPWoRTPu0DCiC2ONh7BIRFgYJHo8H7y4vVxRegd3es/Da3RX4IGya2L4scl/wnND1vdLVQLgDfp9ESKzYi+mOsMBIGg+jPgHFmzGOvi+z/vXrMBzbMUYthJHzMQKDx9Agr82D4W+CjDEY6eMxHPFR+6P8XCLvuVMJKHQUhDqbJAjWj6w76GmtlzQotUUiFJsmGAl4412kmHVMTyzEZrWKtqV0u2goqw8T9SBMyJJk3LmzxKz3lJE146ROMBKmffBbPQw4bY1iEhpcmipFYAsQeWeF318B/F6oP4lZWyR/57oT0FAKNGHWVEaLRo4EEZ6TR0BiLkbwb2R1RNXrIFAFPyP/7r7A4nYD7oCAFsztFiG0We1UeXsfNVEFsTMheUT0Sy8he+Da0g6LYQmZzSWR1K1jgpHn2mvaOt0OlLUPiR70bxlQErLCglhaoQhidSdg5Dlh/6PmSkjJ7/IUIJrB9k75NsOGYUhetci8aZFCVVdBMILr3R0MejweDlkPMTp5dI8HLIOW4o8IefZW7JNBpGGFKdeE68SlSXjoIUTUIH8IycVBPB4Pvt0+Li+8XPra6Mtg/1syqAGYVQjv/xLqSmHnm7D462ETt1Y3jBgt1gFK39NcDYfXyGAzSO0x+OgZaK0Vi4yZn5EEzZEk58OYC4bVIHHQ+z4l5UPBYkn1ULo92jRq3KVQeJGYkB5cJZNS+96Cg2th1LkwZolowYKYJlQehqojMujPmiR/06EiHPUnpil+enXHofZ4OHhaJzg9dVgO/wtKd0BdUfTOlJGQO1OW001WuFIkCFjqKBlj6N+hZzgDCZzTwhOuRlujjMWaqkSL2VwZ8B1v99taHTKWi/QZ97ZJLrPaIukDdcdFo+xukvuv6mD0OeIzxZw+IUssPxIC667U7v8tfW5Z2ps8AkZ9Y/fO0QkqiJ0JkTP49rhQ4uChisWwhPyZOINxf2RYaZ/fJzPuEeHGOw040EUwAhOz52YOmW4M9woxTUwogIPrMFrqoKkZW+5MLIaB1ZaMZdQlHUzzIh3+lT6mvkQemCAO0btfk/XC8+UhGWTkPH3JDTQWK4z7BOz9p7x0bHGw8Mvw/hMinG36Hzj3nvBE1JF35WV5mskNpYdU7IfjH0SFR+fIu7D7VTB9EJ8F8+8UU7YghiEa5rxZeh8NBBYLZE2EjPGidSndFhairXYRjkcvEt/LQ2vEN+nIO/J3zZsN4y6WwX4Q0wwMNovE5yh9rCxxqQPx7QYOr1tM2etOyOI9RaCIhhIo2Ya1ZBtTGkqgNGJf+ljReuXOiBZ8OyMxW4Tg1FFn3+8dC0LCWWG4rLU+SmtGc1XY5DcSmxPSx8kSxOcRf9n6k+GloSTgh1YpS3ssdhHIEjJkEtiVGmVmijOpewFZzgAVxHqJGZceJdmTkDVwjRlkBCOiycYANSKnWOy/AfLmwYG3oGQnjDpfynwmeDyQdJoHsdI3mCac2BTeLt4MDcUywJ8QkecteUSEI68yoNhdMOFS2Pu6zD7GpcG5/w7rfiV+FVv+BPO+IC8p0w+H/gUTL5fBi3Jm+DxQtEECPgTxtsH2v0jaB5BZ/Nmfi/aJsMfDmAslqpsysFgsEhwlY5zcLyXbRAsGEkRq5AJZKvbAobVisl2yVZaUUZLGI/+c6KiXbQ1ynpJtEtwjfawMYof4JHCnmKZouupPigDWUNp1SgAQjUjwt2mSNDYGko6ZjAlYRsySe8Z5Cgshi1UmNVJHyXvI0bc+/0o3cCXLErSwME2JdtlUKdYBzQFfys4CgljtIjintPNbbmuQCcTGQACQxgrpI82VgUAtJ2XpFCOQmDopEIAlMRABMzFsnmh3YbT23oe114JYfX09zzzzDKWlpYwZM4ZZs2YxY8YM4uPPjo7rO///QXLEw68f/MOUMyBjfFgQGxkQxCr2yYswOLNVuU+iISn9T/VhmdkCGWTufV3Wx18SHcVt5PzYt03pGlcKjLsE9r8pg6CkPJh/F3zwWyjbCTtegpk3S12/Fw6shElXnn6mWema5mo4vFaivAVpKIXNT8tAwrDAlE+J71ckSXkihOngcXBhGAGBaYyYlJZsDz8LAbKmyFJfLBqyk1vFhG57kWg+R84ToSypnXAd1Bqc2CRCWWqBCHAJGbH9fn1JW2NAi3FS+nyED1EHTL8IuKU75DdtqQ7vM6yQNRlfzgx2V1uYMnMulq6i4tmcInSljhLTT+swcQMYLhiGvIdcKTKpASKctdZFaM0CQlpX0RqdSbJktIvya/oD56gIR2wMLq21gYmTQGRH96lND61tAyCIffrTn2bbtm3Mnz+ff/zjH+zbJw7448aNY9asWbz44ou9btSQJH4IP/yGI8kjxVzU0xIIiz5WhIETH4Y1MDVHoeDcfs0toSBmVcVbwttH3pGHnCtV/CKCZIzXAfxgJClHzKkOvyPbGeNg7m3io1S0QV5wk66SfT63+JZNvFz/lr2h8qD8ppEDiuItognzuSWH0dw7Ovrj5c2SkPVqijh4CeZFTCsUIaNsZ9hUG0QImPN5mHYdHP8Qjq2TQeLR92RJGwMFC8R8sb3fX1AoO/lxOFhBMNz6YNWW+f0iPDWWy0C4qaJT35soPM2SEqB8l+Se9EQESLA6JDJo3mzImSoJln0+fLU7O57HkRj290rMGTr5vBTBMGRCPS41LJz5/RJtsaU2WpBqqw/7pXc4jyVgltiFRZvpFwGsrVH6ZnDd3SC+aN5WsVTwtmI2NEEvc+72WhDbsGEDa9euZf58mcFua2tjx44dfPzxx2zbtq23px26xOmgY1BhscjAvjQQGn3UIhHEij6A8ZfKjez3SSCP7CkD29bhTvnu8GySu0kc1QEmXx2efbTYxAxHGZykj5UXTtEHsp07E2bcKBqxA29LTrjxl8g+b6sKYz3F5w2YIkY4mPt9sPsVGYSDpBI45/bogbXNJVow9c0bWiTlytJSKwJF1cGw8O1IFP/MsRdD5X4RyEp3iPan5gjseFkEjfx5kD21owanfbACZ5IIG/EZgSU99lofvy88QG6pCWggqrrWYETSWC6CV+kueV9HxtezxclvkTtT3uPWU0yqBrWGqaP1uTQcsVjCfl1ETFT5faI9CwpnwfxirfWd+55FYljAmSzLafDVNwJf71XTey2IzZw5E5stfLjT6WTevHnMmzevt6ccUhytaqbFbyXBaSMpMQmrmoMMPiIFsbxZsPNvMgNXdQAyJ0p55X4VxPoTT6uYjQQ58JYM1JPyZSARJGfq2ZFodiiTPUWEsaCP0ujzZEZ67+uw9x8yCBpzgexTYaz7tNSKKWJk5LeWGtj8rJiygUweTboy2mk8KVc0yvruGbrEpUrgjhFzxFS+Yn940sowJFJi1iQZSJ7YFPCtLZH3WukOmQDJngw5M+T+7OwZGhx4Rgr5QVMvZ3LYbMuRIJq2QL6kHuH3B7QDrdEahLYG0UicSivRntY6qDwg7+aqAx0jIibmyvsiZ1rH5NiRGAYk5VKd0IY5/QZISOvZd1KGBxarvIM6ew95WqP7aFujWFG5G+Xd1lUC8D6m14LYT3/6Ux588EFefvllnM6ByccE8Jvf/Iaf/exnlJaWMmvWLH7961+zYMGCLuu/9NJLfP/73+fo0aNMmDCBn/zkJ1x11VU9vu7a/ZWMyfaQneTEl5yEK7WaSblJpMSpffGgIS5VBisNpfJyyT8Hjq2XWf2gINZcLTbG6uPXP5RsC886NVXA0fdlfeq14Ze9PU5mNJXBz4jZ8vcs2yXb4y+Vl9WBt2HX32SmfdS5sk+FsdNTeUCeR5GagYp9EgjF0ywz/ufcKpqPSHJnyuBdTaqGB3aXTBbmzpSIgJX75DMovLhSYPxSWepPShqQ4i0ywx8MUIEhEeSyJ8skZOqoroWU1rpoH8RIDCMchMCwykDWsIbP5feKyZbfK4u37fSahVPRUiOavqrDULVfNGBR7bFK0JPsaSKAxZ/iXW21i4lnINiGaVpoOLBCtIyK0h67S5bELkwTvW5JxO5piTJDjPr0eaT/t/g6P0c36LUgVlhYSH19PVOnTuXmm2/m3HPPZc6cORQUFJz+4D7ixRdf5N577+Wpp55i4cKFPPHEE1x++eXs27eP7OyOkbvWr1/PLbfcwvLly7nmmmt44YUXuO6669iyZQvTp0/v0bVP1DRT0ezDZhgYI3IYlVTLoYpGJucmMSM/BZtVX5CDgsyJgcR/iHnisfWioXE3hWcPK/apINYftNaFk82CaE5Mv9jxZ00Kl+fNVgfpocTI+fICCs6wT7pKXkSH14ovk9UuCbkhLIxNuGxoBxHoa3weeRZVHw6XmSYcfBv2vSHbKSNh7p3R/sc2l2gdNbLo8MQwAuZzBfKOqtwvwnpkgujkEZB8LUz+pEQKLNsp2rGGEqg+KAuItix9rAhlaaPCftOnwzRl4HmqQBm9pa1RgpLUF4uPds1R0US0J2WkvLszJ8p3OJXJoSMxEGyjQPziLBFBOTyx0WgowxSbQ5a402tTzaoq4O7eXaZXRwE33HADZWVlLFmyhPXr1/Pb3/6W+vp60tPTmTNnDm+//XZvT91tHnvsMe6++27uvPNOAJ566ilef/11nn76af7jP/6jQ/1f/vKXXHHFFXz7298G4JFHHmHlypU8+eSTPPXUU51eo62tjba2ttB2fb08NAoz4ql3GzS5vbx33Edt2X4+PScfr9fH8apGLpyQSYJTswMMOIkjMLDKQDFxBNakERgNJ/Gf+Aj/6EAo+8qDmLlzBp0w4Am8RDxD9GViHPsQvNJ2o/YY1pKPMQHfpKvBF5g9cqVgpo7RF+YA0+O+lr8Aw90aNp2b9EksXjeWovWYW/8Xvwlm3mzZ52uCPf/EHHtxx8hvZyPNVRhH341O0OxpxrLteSyBiQv/yIX4p10vOW6C90pCFuaYC2XgOYTvl6H+XIsZhgOypkPmNGgowag5LLnEIs2lkvJlGX85tFRjKd8NlQcwqg9heFskNH7FnlB1Mz4DM3kkJOVhJmRCfAZmfFbfJv02fdBSjRGZpLexDKP+JIa7YzADEwMzOR/SCjHTx2NmjO/YHl87bUNCFmbKSAlTHjlI9vllCaB9TYkVZ9LHDNPsruFuNPHx8WzYsIFZs2aFyo4ePcrWrVvZvn07Dz30UK8b1R3cbjfx8fG8/PLLXHfddaHy22+/ndraWl599dUOx4waNYp7772Xb37zm6Gyhx56iFdeeaXLACM/+MEP+OEPf9ih/Lkf/TvxLid1boPfNS6mzBMPmMzLNBmXbOKwwNQ0k3iVxQac9Mb9JLUWA5DZsJuRtRtptqWxP/dTIfO4qsRJNLpGnOo0Sg9wemrJrQv4Epkm48tXkOgupyp+PMczLgjVK0+eQYtDtZFDEtNPVsMu4t2BJJmmSUH1+2Q0H8QEjqefT3XChHB1DCqTptLsPHvzjCW1nCCt6SBGRMCBeHcFoyvX4vQ14sfK8fRF1ET8bgD1caOoiT+FP4xyVmCYPuLc1SS0lRLnqcboKq+WaRLnkXqJbWXEuatw+roOv+01HHis8XitLrwWJz6rC5/hxG9YMQ2LLEjfs5g+DNMb+PRh87di87Vg87Vi97di87fQlYeZCbTZkmi1p9PsyKLJmUWLIxO/ceqBks/ioNWeRos9jRZHBn6LRjpWBhfNzc187nOfo66ujuTk0wf3iKTXYsL8+fNpamqKKissLKSwsJDrr7++t6ftNpWVlfh8PnJyovNA5eTksHfv3k6PKS0t7bR+aWlpp/UB7r//fu69997Qdn19PQUFBeTm5JGUGEeuYefLuefw+o5SNhfV8lGlQX5+HtNHp2GzW1gyJVs1YwNNyyKMPa/Jumcc5urNxHtrmDEqFTOY+C8hC3NSz30F+xOPx8PKlSu59NJLsdsHl7budBj7VkCTmPsaZTuxnijHtNhIWfg5UlwpUikpF3PC5QPYSiVIr/uaeRXGkXdkph7AnIZ/58tYTmxkVPX7jMzNCmueg4cUjIs2TT0b8LRgFK2HOicwLVRsObYOY88bGKYPMz4D/zl3kJ80glAMRJsTc/R5HROUDmGG8nNtUOH3iqas7rj4k53GlNDracaoP4FRd0L8sJorMZorMdoasJlubF43dCOIYXcwrQ6IS8eMz4CETNG6JedjJuVgszpJBE7ptWWxyfshGIa/G6ZhnaF9TYkVVVVVp6/UBb2WEL7xjW/wgx/8gL/+9a+kpqb2ugGDHafT2WkwEovFwDAseFwZuBx2Pj13JHEOK+8frOIf20vITnYxJjORDUdquXRqjvqMDST2bEjOlWAR1kQYMQuKN2M98SGkF0qd1mrwNAzKoAJ2u31ovUSqj8jvabWKT9h+Sd5sjF2CLSHi9x29CIbS9zoL6FVfm7AUDq8JCGNWmH2LOEAfeQfL7r9j8XskyECQk5vAdJ89ea9qjok/mLdV7gkQn5/tfwlHdc2ZgTH7c9giTbISsmDsRYM3D9QZMuSea4MOOzjHQuZY8etqqhQ/sYZSaCzrGBremgSuKR2jBPvcEkq+rSGQI6kpHDXO75PFDATmwCIm/FabmM1a7eJr7UiSfupIAlcSRiDcd7fvbnu8BExIyIbEbAnI0YeBaLSvKf3NmfSvXgtiN954IwATJkzg+uuvZ+HChcyZM4fp06fjcPS/2jgzMxOr1UpZWVlUeVlZGbm5uZ0ek5ub26P63cFtl9l9A4MrZ+RR3+pl+4k6/r8Pi/jaJ8S85MOj1Swep+ZXA0rmRBHEAAoWShjgk1skeWbQEbhyfzjim9I7/D75bYMc3yizr/Z4GBcxGE8fq8EbhgsWi+Q8CgljwLTrJeragbdh7z8luMfkq8PHlGyTiG+FFww638w+w+uWBPKVB6LLqw7B1j/L9zesMOVaGLskuk7OdAl4olERle5gGCLIJGZB3kwJJ99cKUJZc6VEB+4qWbLVEU4AHQtsLtFwxadLkKyE7GE72aAo3aHXgtiRI0fYtm1bKIHzj370I44ePYrNZmPSpEls37799Cc5AxwOB3PnzmX16tUhHzG/38/q1atZtmxZp8csWrSI1atXR/mIrVy5kkWLFvXq+gBtjrDK3MDghnNGUl7fSml9G698XMznzx3N0cpmCtKaKUjXfC8DRvoYGRT5PJIYNT5DZgFLPoaRgXQHVQdl8DNcB4axoGJv+IXvc4cjwE24LOyAbbGGo+opw4OgMHbkHYmEBhJN0eqUHGMHV0p0tJk3ifABoilqrZdE0M6kAWt6v1BXLFowd4RfjumXCJIH3gZM0Xidc1u02aHNBYXnSwQ4RektFotolhIj/DG9bfLOCwplwfxJ7sbu5/jq9vWtElQmlKMsMZxsV/PeKUoUvRbERo8ezejRo7n22mtDZQ0NDXz88cf9LoQFuffee7n99tuZN28eCxYs4IknnqCpqSkURfG2224jPz+f5cuXA2JOuWTJEn7xi19w9dVX85e//IWPPvqI3//+9z2+9tTLvoCBn9riVmgNl9utFj4zr4DfrDnInpIGtp+oY9bIVDYdrSYryYnLbu36pEr/YbVL8sfK/TJ7WHAu7Hsdjq4PC2I+j8xWZ08e2LYOVbxtgXw2AQ6/Iy/6uHQZXAbJnqozoMMRi0VM6Yo+CKctGH+JmCnueFm0oy01MO9OyY8Fsr3nHwHhY9SANb3P8LTK94wMSw/yPbf+OVw+cgFMv0G0hkESc0QzponNlf7A5gyEvm8XlMrvF2EslBspsPjcss/0SyREv0/enZG5xSwWmWyxOWWizeaSxR53dpgdK0of0KdRJJKSkrjgggu44IILTl+5D7j55pupqKjgwQcfpLS0lNmzZ/Pmm2+GAnIUFRVhiTDtWLx4MS+88AIPPPAA3/ve95gwYQKvvPJKj3OIAWBYSM/I4pI0P+8frORkbVgay0uJ46JJ2fxrbzmvby9hcq7M9m47XsvCsWqONWBkTRJBDGDUQtj/BtQeldnrlIB7fMUeFcR6S8l2eZmD+BkcWi3rk68W52uQl7Qmbx6+GEbA9y8OTgaiZo4+T2bCNz8r99+6X8H8u8L5sbxtcHD10DfHqzwIJzbJIDaSog9g9ysBHzGnaAXba4TzZkk+vaH63ZWhi8UCrp5FeVMUpe8Y8k/9ZcuWcezYMdra2ti4cSMLFy4M7Vu7di3PPvtsVP3PfOYz7Nu3j7a2Nnbu3MlVV51ZpDyb1cL54zNJT4g2Z7toUhbpCQ4a27y8s198kw5VNFHddAYZ6JUzIyFTzIEAnMmQG0i9cOz9cJ2WWqgviXnThjxtDVC+O7x94G0ZeCbnw4hzwuV5syRBojK8GTFbEqgHyZ4Ki78mZkoNJfDuz6OTfYMkpt37TzGdGko0VYkJ7tH3ooWwllrY+JQE5fC2QupoWPLtaCHMHg8TL4f8c1QIUxRFOQvRJ38fYLNauGBCFnZrWBVvs1i4croEAXnvQCU1zSKAbT5WMyBtVAJkRWi7guZyxZujQ/9GJMBUuknxZjFhAXEOPxoQbqdcGzZRcSVH//7K8CZ7Moy7WMyYQHyhzr8XUkaBt0WElIMro49prhJTxZMfi1nUYMbdDEfegz2vSVCESE58CO/8RIRNwyb3wXnfkGhwQdJGw9RPdTQVUxRFUc4aVBDrIxKcNuaOjs51MXVEMmMy4/H5TdbuE61YRUMbxbWnzveh9CPpY8Q8DiBjnESK8rnFpChIbZGY1indo7FCQtYH2btCfAoyJ0bnixrKZmdK70grlKAd9oCDflyaaMaC0Un3vi4CWWREN9MvZo17Xhuc2mmvW9q3828S4CeSxjLY8Bv4+AURNlNHiRZs3CfCyZitDhhzoZTZXbFvv6IoijJo0FFRHzI2K5G8lPCL1cDgsqmiFdtyrJraFtGK7ThRNyDtU5DZ+cyJ4e3C8+TzaIR5omlCxb7Ytmsoc+LD8HrdcUkLADDlk+HyxBwZlCtnHwmZ0hcSAtogqx1mfhZm3CS+gxV7RXsUadoKEuBi/5tw6F/QOgiemV63aOp2vBTQ2EXkafK5RZP3zk+h6oB8r8nXwHnflL4fJClPtGAZ42LceEVRFGUwckbBOlavXs3q1aspLy/H386M5Omnnz6jhg1Vzhmdxhs7SvAHosGOzkhgbFYChyuaeGdfBZ+anU91k5vi2hbyU+NOfTKlf8iaBGU7RODKnwe7/wFN5RJIICikVe4XfyaLRrk8JdVHJE9YkN2vyWf+3Oiw3CPnx7ZdyuDCEQ8Tr4SiDWEt0ujFkk9uy5/Eb+zD38PIhTD12ujIgTXHREudPlbuSVdKbNveWg/le0TA8nk67i/5GHa9InnBALKnwfTro80QrXa5J7ImazQ5RVEUJUSvBbEf/vCHPPzww8ybN4+8vDwMfbkAkBJnZ0JOEvtKw6Y2n5iczeGKI3x0tIaLJmWREudgx4laFcQGCmeiCAm1RWKmOHK+BOw4+n5YEPO0SD4knbnuGr8/OnlzxV4ZrBpWMUcLkj5GEo0qZzdWG4y5QLRCRRtEo5SUK35je/8pOchObITyXZIQOjKohWlKaonqw5AyEjInyWd/vXd8XqgrkmvWnei8TtVB0YLVHpPtuHSY/mmJ/hhJaoGky9CUDYqiKEo7ei2IPfXUUzz77LPceuutfdmeYcG0EckcqmjE6xO12NjMRMZkxHOkqpl391fwyVn5VDd5OFHTzMg0TW44IGRNFkEMJGjHsfehdIdEOotLlfKKvSqInYqKPWHfHtOUQSnI7xkMTW5YNHmzEk3meEjIgMNr5X6z2kXwypsN21+ExlLJuXVsnQS5iDRpNU2oPS6LI1H2pY6SxLVnKpR520ToqjshJradab9AJmj2vxUO6mN1wNhPSM60yGTw9jgoWCgTEYqiKIrSCb0WxNxuN4sXL+7LtgwbXHYrE3OS2H2yPlT2iSk5/PH9I3x4tIYlk7JJdtnZWVyngthAkTxCTJxa62RWPn08VB+UmfpJV0qdxnJoqgz7tihh2idvLt4M9cWiYZxwWbg8e6qELFeUSOLSRMg6uVXC1pumCCwXflvyzx14W7Rf656QvHOTrhRNWiTuRjm2bKf0u4QsEcjiM6TPORK7Dg7jaZFJhNY6ucebKqClWtrRFRV74eCqsGmlYZEQ/RMvl3QYQQwLZE8JpGpwdn4uRVEUReEMBLG77rqLF154ge9///t92Z5hw+TcJPaXNYS1YlkJjM6I51hVM+sOVnLl9DyqmzzqKzZQGIZoxY5vlO3C8wKC2HqYeJmY1wGU7YKxSwaunYOVkm3h5M0+D+xbIevjLwn799ickKfJm5UusFhh5DzJr3X0PRGKLFYR5EcukITrxz+E0u2yZE2WSIORwXaCeFtFi1V3PFxmGJJA2WKT85p+MYf0ucHv614b3U0SUfXYOhHWQJ4NI+fB+KXhvIRBUgvE1DnWfmyKoijKkKTXglhrayu///3vWbVqFTNnzsRuj05o/Nhjj51x44YyLruVSTlJ7ApoxQwMLpyQxZ+rjvHhkWo+MTkbp83K3pJ6FcQGiozxosnxe2XW3Zkks+Qnt0mCVYCaI9A2V/07IgkGLwhy7H3RJjhTYEyE0Jo3WzUCyulJzJJIgmU7oWS73I9xqTDrFhh7sQhkJdtFI1WxFxKyRRDKnwfx6V2f1zSjEyx3F2+b+Kmd3Aple8AMREe0OiXs/tiLRKMXSVwaFCzQnGCKoihKj+i1ILZ9+3Zmz54NwM6dO6P2aeAOYXJeEvsitGKTc5PISHRQ1ehma1EN547NpKy+jeomN+kJjgFu7VmIzSHCWMVemTEffb4M+g6vDQtipilCR4FG/QsRmbzZ0wIHAkl5J10p/jIgQq0mb1a6i8UqpnwZ4+HER2KWCGI2PPdOSRJ++B3RYDeViwZ23woJupM1SZbUwmgfre7i94lZbeV+qDwA1YeiQ9Mn5UPhYvF1tLXL+xWXJu1OK9RoiIqiKEqP6bUgtmbNmr5sx7DEabMyOTeJncUBrZhhcN64DF7bVsK6Q1UsHJOBYRjsLaln8Xj1QxoQsqeIIAYw+jwRKuqKJCx70Mm+cj+MmN27Qd5wo7FcghUEOfA2eJohMVc0AkFGztfkzUrPcSSIKXDOdAkLHwyoE58J02+AyVeLduzEJonQGTRHPLgKMES7ljRCTAaDfmJ2l0yomCb43dDWCG310FwtYfMby8ITC0HiM2DEOXLfJ+d3bGdCprRRBTBFURTlDDijPGLK6ZmYk8Seknp8gff8nFFpvL2rjKpGN3tLG5iSl0xRdTOz3V7iHfrniDlxqeLXUXtczA9HzpVZ98NrwoKYzy3CWM60AW3qgGOaYZ86EC3FkXdlfeqnJEgBBJI3j459+5ThQ0KG+Bs2V4s/Yu0x6X82lwj8BQvEp6xynyRfr9gP7gaZKIjMa9ddbHESITVzoixJuR3rGBbp19nTNB2DoiiK0iec0ci/traWP/7xj+zZI/4iU6dO5Ytf/CIpKeqoHMRltzImM5GD5Y2AaMnmj0nnvQOVrDtUyZS8ZPwm7CttYM6otNOcTekXcqaLIAbik3J8o4Syb64Kh2Ev2w1ZU85uLU/VQYkwF2TPP8D0iVlY9pRwuSZvVvqK+HQYdzG4mwOmg/slgAZIQIyRC2QBEcwaTkJ9iQhw7kZZvG2AIZori1UiHDqT5PjkERKNsb3PV1QbMsRkMn2MhKRXFEVRlD6i14LYRx99xOWXX05cXBwLFsiL8PHHH+dHP/oRb7/9Nuecc06fNXKoMyk3KSSIASwal8H7Bys5XNFESV0LeSlxHCxvZHp+CnbrWTzQHyiScmWw1Vwl61mTZJb9yLuS3whkQFdz5OzNK+Z1Rydvrj4cCF9viDYsSPpY1RYofY8jXswE82aJKWFtEdQck/syiCtFlqwpXZ6mWxiGaHVTRooPWjCvoKIoiqL0Mb0WxL71rW9x7bXX8oc//AGbTU7j9Xq56667+OY3v8m7777bZ40c6qTE2RmR6uJkrUTwSo1zMH1ECjuK69hwqIpPnzMSj8/kcEUTk3I159KAkDMtbGY39iIRxIo+gElXiNkSiJYsfezZ6RNSsk0Cc4CYiO16RdZHnSs+OSDahnydgFH6EcOQyZKkgE9iSw00Vohw1lQhvl+nygXWGTaXTMQkZAZykeVIIB9FURRF6WfOSCMWKYQB2Gw2vvOd7zBv3rw+adxwYkpeckgQA9GK7Siu4+MTtVw5I484u5X9ZQ1MzEnUqJMDQdoY0fi4m2RGPTEXGkvh2AbJXQQy6Ks7DqmjBratsaa1Dsp3h7dPbpGAJlYnTLoqXJ49TZM3K7ElLk2WrEBuMb9ftGRtDTJx4PdInju/VyYKLHbJK2ZzhoN5qNClKIqiDBC9toNLTk6mqKioQ/nx48dJStLBWHtykl2kJ4Sj7o3OiCcnyYnXZ7K1qAaAhlYvpfW9yHujnDkWC2RPDW+Pu1g+D6+RgVyQku2xbddg4PimcFQ5n1t8wwAmXBoWvOzxmrxZGXgsFnAlQ0o+ZI4X38W8maKpzZsFOVNFaEsbLf5nKoQpiqIoA0ivBbGbb76ZL37xi7z44oscP36c48eP85e//IW77rqLW265pS/bOGyYnJscWjcwWDhWkpFuPFKNiZjT7C9r7PRYJQZkTQonIM6fB65UmVk/sSlcp6lCggGcLdQGwoMHObwWWmshLj06efPIeRreX1EURVEUpQf0WhD7+c9/zqc//Wluu+02CgsLGT16NHfccQc33ngjP/nJT/qyjcOGUenxuOzhn3x2QRoOq0FFQxtHKiQS2MnaFhrbvF2dQulPrPZw9D+LNawVO7Q6Os9Q6VmiFfP74cSH4e2W2kC+JmDyNWHBKzH77A1ioiiKoiiK0kt6LYg5HA5++ctfUlNTw8cff8y2bduorq7m8ccfx+l09mUbhw0Wi8H47MTQtstuZXYgZP3GI9WA+JlHRlhUYkzWFPEhARi1SEzumqvg5MfhOvUne5eraKhRtgNa68Pbu18V08S0MdFBOQoWxr5tiqIoiqIoQ5weBeu49957eeSRR0hISODee+89Zd3HHnvsjBo2XBmfnciuk/WhwF4Lx6Tz4ZFqdp2so6HVQ5LLzqHyRmbkp2C1aNCOmGN3QdZkKNsJVgeMXQL73oCDq6OFj5NbYeLlA9fO/qa1PhCePkDVASjZChgw/cZweeYEiTanKIqiKIqi9IgeCWJbt27F4/GE1rtCo/51TbzDRkFaPEXVzQDkpcRRkB7H8eoWPjpWzcWTcmjz+jlW1cTYrMTTnE3pF3KmSZRA0w+FF8DBf0FDsZQFA3rUBxLHJucNbFv7i6IPwO+TddMHO/4m66PPk0AIIIJq/tyBaZ+iKIqiKMoQp0eC2Jo1azpdV3rGhJzEkCAGsHBMBserT7DpSA1LJmZjMQz2lzWqIDZQOOIhcyJU7BXTxNHnweF/iWYsMrLiya3DUxCrPgz1xeHtI+9KKH9HAkyOCFefNwvscbFvn6IoiqIoyjCg1z5iRUVFmF0kzuwsrL0SJifZRUpcOMLcjPwU4hxWals87CttAKC6yU1lY9tANVHJnQFG4PYY/wnR/tQdh9Kd4TqNZVB3YmDa11943RKuPkhbPex7U9Ynf1IEU4C41GihVFEURVEURekRvRbExowZQ0VFRYfyqqoqxowZc0aNOhuYmBPWdtmtFuaOSgVg45GqUPn+soZYN0sJ4kwUrRhI0tcxF8j6vjcgcgKieEvs29afFG8GT1hby+7XwNcmSawjg3KMWiw5mxRFURRFUZRe0euRlGmanfqCNTY24nK5zqhRZwOFmQnYreHfb8GYDEDyiNU0uQEoqmqm1eMbkPYpiOmdxSrrYz8BVqf4ipVGBLForoLqIwPTvr6msULMMYNUH4Lij2R9+o0QvN8zJ0JSTuzbpyiKoiiKMozokY8YEIqWaBgG3//+94mPjw/t8/l8bNy4kdmzZ/dZA4crdquFsVkJ7CuVUPWZiU7GZSVwqKKJzUU1LJ2Sg9+Eo1VNUYmglRjiiJdw9mU7xT9q7EVw4C0x1cudGTZdLN4sGqOg0DYU8fvh2LqIbS9sf0nWRy2S7wdgc2mADkVRFEVRlD6gxxqxrVu3snXrVkzTZMeOHaHtrVu3snfvXmbNmsWzzz7bD00dfozPToranjdacoptOVYT8r87VN4U83YpEeTOCOcVG3sR2OIkcMXJiKihbQ0SUXEoU/IxtNSEtw+uDgToSJTkzUFGzpcQ/4qiKIqiKMoZ0WONWDBa4p133skvf/lLkpNVW9NbUuLs5KY4Ka2ToBxTR6TgtJ2ktsXD4comxmUlUtfiobKxjcxETZI9INhdkDMVSrZLhMBxF8O+FbD3ddGKWQNBV0q2Qcb4oRlFsKkSSreHtxvL4MDbsj7t06INBEjKg8zxsW+foiiKoijKMKTHgliQZ555BoDdu3dTVFSE2+2O2n/ttdeeWcvOEsZnJYUEMbvVwqyCVD48Us3mYzWMC4SvP1TeqILYQJIzHSr2gbdNtGJH10FLtYR1H3+J1PF5REs2evGANrXH+H1w9L1wABLThO0vSu6w7KnhJNaGBUadO3DtVBRFURRFGWb0WhA7cuQI1113HTt27MAwjJApXTCAh8+nQSa6Q35aHE6bhTavH4C5o0QQ23myjms9I3DZrRyrbuac0WnYrRqlbkCwOWHEHElybHXAlKvh4xfg4EoYtVDM9wAq90PWZIhPH9j29oSTH0NLbXi7aL3kEbM6YMZnwuV5MyVkvaIoiqIoitIn9Hpk//Wvf50xY8ZQXl5OfHw8u3bt4t1332XevHmsXbu2D5s4vLFaDAozwwFPRqbHk5XkxOsz2VFcB4DXZ0YlgFYGgMxJ4EqR9fz5kDISvK3hHFsg2qRj66PD2w9m6kuiTRKbqyRcPcDkqyFOfBaJS4PcWbFvn6IoiqIoyjCm14LYhg0bePjhh8nMzMRisWCxWDj//PNZvnw5X//61/uyjcOeoAkigIHB3FEyAP7oWHWo/FB5Y8zbpURgsUDBAlk3DJh6nawfWwcNpeF6TRVQvifmzesxnlYxrQximqLl87VB+lgoDORNMyww5kLNGaYoiqIoitLH9Hp05fP5SEqSqH+ZmZmcPHkSgNGjR7Nv376+ad1ZQmq8g4xER2h7zqhUDAOOV7dQ3tAKQGWjm7oWz0A1UQHRgiXny3rGeImoiAm7/h5dr3gztA1ywfnY+9GJm4+slbxhVgfM/lw4NH/ezKFlaqkoiqIoijJE6LUgNn36dLZtk8S2Cxcu5Kc//Snr1q3j4YcfZuzYsX3WwLOFSK1YksvOxBwRcrefqAuVH6vSUPYDTsH8cGLjKddKaPvKfSJ8BfF7xZ9ssFK+B2qPh7cbSmHP67I+9TqIz5T1+HQ1SVQURVEUReknei2IPfDAA/j9EmDi4Ycf5siRI1xwwQWsWLGCX/3qV33WwLOFUenx2CxGaHvmSPFH2n6iFhPxOTpWpX5iA05cGmRPk/WELJhwuazv+j9wRwjKdceh6lDs23c6Gsvh+IfhbZ8Htv4ZTK8krw5GfbRYxTxRTRIVRVEURVH6hV5HTbz88stD6+PHj2fv3r1UV1eTlpYWipyodB+HzUJBejxHKmUwPyU3GavFoLLRTWldK3kpcTS0eqlucpOe4DjN2ZR+ZcQcqD0miZzHfUK0YY2lEuhi9i3hekUbRFhzDZJce+5mOLQGTP//z96dh8d114f+f5/Z9xnNaN8ly/ua2Inj7DshZS23EG5Y20JvC5Re2qcPPL/2Fkrvpb3l3qeUpUBboO0lQKGFAg0BZ3cSx44dO14ly9a+jJbZ9/X8/jijkSZeYsu21s/reZRIo5nRV/KR5nzO97PM3nbqPyA6CkYbbH9k9vamXZKSKIQQQghxHV3Ty91er1eCsKswt3uixahnfZ2Wrjg3PXFA0hMXn94ArXu093X62QBm5AAEemfvV8hB/3NQLJ7/HAutWIBzT1fWhY0f1WrFAG54/2xXSHeLNsRaCCGEEEJcN/MOxO69914+97nPnXd7KBTi3nvvvapFrVZ1Tgtmw+w/ybZmDwDHRyLl9MShQLI8s00sIncT+NZo71e1Q9tt2vuvfV9raz8jMQ1jry748s4ztF/r6DgjOa2tFbRdvdqN2vtGG7TfvvDrE0IIIYRYZeYdiD377LN85Stf4R3veAeJxOwuTTab5bnnnrsmi1ttdDqFVt/srtiGBidGvUIwmWU0lAIgmS0wFc8s1hLFXM03g8Givb/xLWD1arO4jv+o8n7+4xAeWvj1zRh9Fabn7tRl4fB3tIDR067NDJvRcQcYLQu9QiGEEEKIVeeqUhOffPJJ/H4/t9xyCwMDA9doSatb25xAzKTXs6Feqy86NhIu3y5NO5YIowXaSimKBquW3ocCo4dg5FDlffueg0RgwZfIZDeMv1Z529HvQWRE2/3a+UFQ9NrtTTeCq3Hh1yiEEEIIsQpdVSDW0NDAc889x9atW7npppt49tlnr9GyVq8ahxmbSV/+eKZ74vHRSDklcSiQpFiU9MQloaodajZo73s7YN1D2vvHf6il/80o5uHcU5WdFa+3YL+WkjhX769g/Ig2J2zXb2pdIAGq2qBBWtULIYQQQiyUeQdiM005zGYzjz32GJ/85Cd56KGH+NrXvnbNFrcaKUpleuK6Oidmg45IKs9QSNsJy+SLTMTSF3sKsdCabwKrR3t/7QPg7YRCBg7/k9awY0Y2AWefqrztegmc0xqFzDX+GvQ8rr2/9Te0odSgrb39juu/JiGEEEIIUTbvQOz1DSP+5E/+hO9+97v8n//zf656Uatdu89eft+o17GxXhvufHJ0tnviSKlmTCwBegN03KV1UFR0Woqi0abNEjv6XZj7u5IMQO/e6xuMTZ2B/ucrv27gnDYvDLS1znR91Ju0Zh164/VbjxBCCCGEOM+8A7H+/n5qamoqbnvXu97FgQMH+Na3vnXVC1vNvHYTDsvsiLdNjVp64unxWLl74khIuicuKTYvtNyivW+tgl2/pdVejR+d3YWaEZ/QUgTz16HpyvhrMPhi5W3hITj4TS09snYzbHq7drtOD133zbatF0IIIYQQC+aKBjp/6lOf4vOf/zx2u50vfelL12tNAmjz2jg5FgVgbZ0DvaIQSGSZimaodVlIZYsEElmqHeZFXqkoq1kH6QhMnNBa229/RNsRO7sXHLVaCuOM+KQWoK2579oMfM5nYWDf+d0ZY2Pw8t9pqZK+Ltj5IW3XTlGg405w1l/91xZCCCGEEFfsigKxI0eOkMvlyu9fjAx1vnrNVdZyIGY26FlTa+fMRJxT41FqXVp78eFgUgKxpaZ5F2SiWkDUfJMWcJ3dC699T2t1X7919r6pMHT/XKvP8rTM/2smAtD/LKSjlbdHhuHANyCfAk8b3PSR2RTEllu0RiNCCCGEEGJRXFEg9swzz1zwfXHt+UrdE5PZAgCbGtzlQOzu9bWAVid2Q2vVYi5TvJ6iaDVYPY9r9WDrH4ZUSGtpf/g72o7U3GAsn4GzT0L1OmjaeWUzvPIZLRVx8lRlPRjA5Gk4/G1tZpirCXb/DhhKQXvjDVC74Wq/UyGEEEIIcRXmXSM2NDR00RqloaFFHF67gjRXWcvvb2zQGnaMhFJE09quZCydJ5JcgA584sroDdB1P5idWmC2479Cww2gFuDQt2Do5fMfM30GTvybNnz5jVrcp6MwclgbHD1x8vwgbPggvPL3WhDmWwu3fkJrHgLaLl3jjmvybQohhBBCiPm7oh2xuTo6OhgfH6e2trbi9kAgQEdHB4VC4aoXt9o1V9k4MxEHwGkx0lxlZSSU4vR4lN0dPgCGQ0ncNmm2sOSYbNpMsTNPQCYGN74fXjPByAE49n2I+2Hj27R6rRmFrLbDNf4aOGpRLD6cqVEInAVF1VIe4xOQDF74axbzcPInMPiC9nHTTtj+X7WmHKB1SpSdMCGEEEKIJeGq2tdfqBYsHo9jsVxBepW4qFqnGZNh9p9oU4PW1OH0+GwtkLSxX8LMDi0Ys7i1gGvHe6HrAe1zfc/C/q9cPKiKT8LECbyJMyiDL8LwAS3d8GL3jwzDvv87G4StfRB2vG+2pX7HnRKECSGEEEIsIVe8I/apT30K0Bpy/Omf/ik22+zw4UKhwIEDB9ixY8c1W+BqptMpNHosDExrg5w3Nbr41akJzk0myOQLmA16goksiUweu3nem5viejI7tDqxs09CYgo2/Bq4GuG170OwD577K1j3ptk5ZFcqG4eeJ0ot61UtBfGG90HtJu3zRhusuUfr2iiEEEIIIZaMKz57n+mWqKoqx48fx2QylT9nMpnYvn07f/RHf3TtVrjKtVTZyoFYjdOMz2EiEM9yZiLO1iYtJXE0nGJdnXMxlykuxWiB9W+Gof0w3as1y/C0wJHvQqgfTv8UBl6Aznu0rotG6xs/Z8wPQy/B4H4oluoEG3bAlv+iBX8AzgbovOvynk8IIYQQQiyoKw7EZrolfvjDH+Zv//ZvcToXJwAIBoN84hOf4Gc/+xk6nY53vetdfOlLX8LhcFz0Md/85jd57LHHePXVV4nFYoRCITwez8Iteh4a3Bb0OigUQUFhU4OLfb3TdPujs4FYSAKxJU+nh/bbwVGnpRnaquHW39fe7/5PSAXh5L/Bqf+AmvXgW4Nir8WaDWhBVzGrdWGMjMB0D8TGZ5/b3Qyb3qHNCQMtFbF+qxaY6eadfSyEEEIIIa6jeeezffvb32bfvn184xvfoK+vjx/+8Ic0NTXxL//yL3R0dHD77bdfy3We59FHH2V8fJy9e/eSy+X48Ic/zEc/+lEee+yxiz4mmUzy0EMP8dBDD/GZz3zmuq7vWjHoddS7rYyWasHW1zvZ1ztNjz9GUVXRKQoT0TS5QhGjXk66l7zqtbPBWGQEWm/RmmoMH9B2xeJ+mDwJkyfRA+sBJi7wPIoOajdD+21QM6f2y1GnPafNuzDfjxBCCCGEmJd5B2L/9m//xvvf/34effRRXn31VTKZDACRSIT/9b/+F48//vg1W+TrnT59mieeeIJXXnmFXbt2AfDlL3+Zhx9+mC9+8Ys0NjZe8HF/8Ad/AMCzzz573dZ2PTRXzQZibV4bZoOOZLbAcChJm9dOUQV/JE2L1/YGzySWBIsL1j6gDX0eO6I14Gi/XXuLjsJUD4QGUBNT5JIRjHoFxWDRmn44G8HXCdXrwWSffU6bV9sBq2pbtG9LCCGEEEJcvnkHYn/xF3/B17/+dT7wgQ/w/e9/v3z7bbfdxl/8xV9ck8VdzP79+/F4POUgDOD+++9Hp9Nx4MAB3vnOd16zr5XJZMpBJkA0qnUszOVy5HILM8Or1m6oGAewrtbB8bEo3WMRmt1ah8rB6Rj1TuOCrEdcI/YGWNsAkRGUQK+2Q2av197a76JQKHD69Gk2btyIXn+BRh6qAu4WVN9acDVoty3QMSlWlpm/ZQv1N02sXnKsiYUix5pYKFdzjM07EOvp6eHOO+8873a32004HJ73gi6H3+8/b36ZwWDA6/Xi9/uv6df6whe+wOc+97nzbn/mmWcqOkZebwNBhXjp39mWUwAdrw1OU1+YBKBbB9OnVC4wUUAsE7qiC0sujCUXwlhIYCik0Ct6Tp3uRlX0FHVGcjorOYODlNFDxuhCHYsDR0pvQlydvXv3LvYSxCohx5pYKHKsiestmUzO+7HzDsTq6+s5e/Ys7e3tFbe/8MILdHZ2zus5P/3pT/NXf/VXl7zP6dOn5/Xc8/WZz3ym3LIftB2xlpYW7rnnHnw+34Kto20syvFRbTeuI5vnwBNnCGcVWtZswG3VdsJ2b6yh2mFesDWJ6yuXy7F3714eeOABjEbZ7RTXjxxrYqHIsSYWihxrYqEEAoF5P3begdhHPvIRPvnJT/Ktb30LRVEYGxtj//79/NEf/RF/+qd/Oq/n/MM//EM+9KEPXfI+nZ2d1NfXMzk5WXF7Pp8nGAxSX18/r699MWazGbP5/ODGaDQu6C92W7WTU/4EAC6rnlavjaFgkt6pBLs7tIBwIp6noeriXSPF8rTQx5pYveRYEwtFjjWxUORYE9fb1Rxf8w7EPv3pT1MsFrnvvvtIJpPceeedmM1m/uiP/ohPfOIT83rOmpoaampq3vB+e/bsIRwOc/jwYXbu3AnA008/TbFYZPfu3fP62ktdld2E3awnkdFqxTbUOxkKJunxx8qB2Fg4xY4WzyKuUgghhBBCCHE55t3vXFEU/r//7/8jGAxy4sQJXn75Zaampvj85z9/Ldd3QRs3buShhx7iIx/5CAcPHuTFF1/k4x//OI888ki5Y+Lo6CgbNmzg4MGD5cf5/X6OHj3K2bNnATh+/DhHjx4lGAxe9zVfC42e2cG86+u1uWFnp+LkCkUAwskc8Ux+UdYmhBBCCCGEuHxXPXjKZDKxadMmbr755ksOU77Wvvvd77Jhwwbuu+8+Hn74YW6//Xa++c1vlj+fy+Xo6empKKD7+te/zg033MBHPvIRAO68805uuOEGfvrTny7Yuq9G05xArN5twW01kC+o9E3Fy7ePhVOLsTQhhBBCCCHEFZh3aiLAU089xVNPPcXk5CTFYrHic9/61reuamFvxOv1XnJ4c3t7O6qqVtz22c9+ls9+9rPXdV3XU53LgkGnkC+qKChsqHdxoD9Itz/G+noXAKOhFOvqnIu8UiGEEEIIIcSlzHtH7HOf+xwPPvggTz31FNPT04RCoYo3ce3pdQr1pblhMJue2O2PoqIFnRPRdDlVUQghhBBCCLE0zXtH7Otf/zrf+c53eP/7338t1yPeQFOVlZGQln64psaBQa8QSeWZiKapd1kpquCPpGnxLtyMMyGEEEIIIcSVmfeOWDab5dZbb72WaxGXYW6dmFGvo6tGq8vrHo+Vb58J1IRYalRVpVhUz0sbFkIIIYRYbea9I/bbv/3bPPbYY/OeGSbmx2LU43OYCMSzgJae2O2P0e2Pcff6WkBr2KGqKoqiLOZSxSpWKKpMxzNMRjOEklmi6RypbIFcYTYAMxl02Ex6XBYjVXYjtU4LPrsJnU6OWyGEEEKsfPMOxNLpNN/85jd58skn2bZt23nDzP7v//2/V704cWFNHmtFIAYwHEySyOaxmwxk8kWm41lqnOcPohbievJH0vRNxxkJpcgXLr3rlc0XyeaLhJM5hoIAEUwGHU0eK121Djl+hRBCCLGizTsQO3bsGDt27ADgxIkTFZ+TnZjrq8lj5dhIBACP1US9y4w/muHMRIwbWqoAGA2n5ERWLIhiUWUgkODUeJRoanaOnYrKVCzDUCDJRCxNJKXtihVVFaNeh91soNpuot5tpd1nx2rSk80X6Z9O0D+dwGs3sq7OSZvPjl52yYQQQgixwsw7EHvmmWeu5TrEFaiym7Cb9SQyBQA2NLjwR6foHp8NxMbCKXa0eBZxlWI18EfSHBoMVgRg45EUhwdDnBiNEE1f/oDxVq+VLU1ubmytwmYyEEzkeLkvyPHRCDtaPLT57NfjWxBCCCGEWBRXNUdMLJ5Gj5XeCW2Q8/p6J8/2TNE7EaNQLKLX6Qgnc8QzeRxm+ScW1146V+DIUJj+6QSg7X71TSV46vQEA4HZIeoGnUKr10a924LXbsJu0qMoCtlCkXg6z1Qsw3AoyXQ8y1AwxVAwxd5TE9zYWsVtXT6qHRYSmQIvng1wZiLOzrYqvHbTYn3bQgghhBDXzLzP0j/1qU9d8HZFUbBYLHR1dfH2t78dr9c778WJi2uaE4i1VNmwmfQkswUGg0k6q7VOiqOhVLmGTIhrZSSU5EBfkExem1cXSmT5j9dGOVM6HnUKbG50s6PFw9o6BwbdGzdnjaZynByLcGgwxHgkzYH+IAf6g+xs8/CmzfU4zEamYhl+edLPpgYXW5vc0tRDCCGEEMvavAOxI0eO8Oqrr1IoFFi/fj0AZ86cQa/Xs2HDBr72ta/xh3/4h7zwwgts2rTpmi1YaOpcFgw6hXxRRacorK9zcmQ4TI8/Vg7ExsISiIlrR1VVToxGOT6q1ScWVZWXzk2z99QEuYKKXlG4ucPLXetqcFmNb/BslVxWI3vWVHPLGh99UwlePDtNtz/G4cEwJ0aj3L+xjj2dXnQ6HSfHooxH0tza5cNlubKvI4QQQgixVMx7jtjb3/527r//fsbGxjh8+DCHDx9mZGSEBx54gPe+972Mjo5y55138t//+3+/lusVJXqdQr3bUv54fYMWcHX7Z+eJTUTT5ArFBV+bWHmy+SLP906Xg7BYOsc/7Ovj8eN+cgWVdp+N37+/i7dub7ziIGwuBYU1NQ4+sKed37mrkyaPlUy+yH8eH+cb+/oIJbRuocFElieO+xkopUYKIYQQQiw3894R++u//mv27t2Ly+Uq3+Z2u/nsZz/Lgw8+yCc/+Un+x//4Hzz44IPXZKHifE1V1vLw5rW1ThQFpmIZAokMPruZoqo1U2jx2hZ5pWI5S2ULPNMzSTiZA7TUxP/38iDRdB6zQcfDWxvY1VZ10W6pLquBGocZt82IxaBHr1MoFFUS2TyRVI6pWKbceGauNq+d3717DYcHQzx+fJzhYIq/fbqXd97QxLZmD/miykvnAkRSObY1u6VbqxBCCCGWlXkHYpFIhMnJyfPSDqempohGowB4PB6y2ezVrVBcVJPHWn7fatTT7rPRP52kxx/j1jVa6/qRUEoCMTFviUyep7oniZe6H742HOJHr45SKKrUOEy8b08bNQ7LeY8zG3R01Tpor7bjvowdsnAyy7mpBH1T8YqhzzpF4aZ2L101Dn5waIihYIrvvzJM/3SCt25rKKcqRlI5bl3jw6Cf9ya/EEIIIcSCuqrUxN/8zd/kxz/+MSMjI4yMjPDjH/+Y3/qt3+Id73gHAAcPHmTdunXXaq3idSxGPT7HbAe5DfXa7uTc9MSxcApVvfRgXSEuJJ7J8+TpiXIQdqA/wA8OjVAoqmyod/K7d3edF4QZdArbW9y8fUcj21s8lxWEAXhsJna2VfGOG5rY2VaF2VD5p6nKbuKjd3Ry7/qa0lqC/NP+QdI5bSdtJJTiydMT5Y+FEEIIIZa6eQdi3/jGN7jvvvt45JFHaGtro62tjUceeYT77ruPr3/96wBs2LCBf/iHf7hmixXnm7srNtOYo38qQSavnZBm8kWm47IrKa5MIpPnqdMT5ZTBl85N8x9HxwDY0+nj/be0YTHqKx7T4LHw8LYGNje6570zZdTrWF/v5K3bG9nQ4GRuY0SdTsf9m+p5dHcrRr1C72Scbzx3jlBypm4sx1OnJ0llJRgTQgghxNI370DM4XDw93//9wQCAY4cOcKRI0cIBAJ885vfxG7XBq/u2LGDHTt2XKu1igtorpoNxGqcZrx2EwVV5exkvHz7aDi1GEsTy1Qmr9WEzQRh+3qn+PmxcQDuWFvNW7Y3VNRj6XVwc4eXe9bXXrO5dSaDjhtbq3hoS/15u2qbG9189I41OM0GJmIZvvHcOabjaQAiqRx7T0+QyFz+IGkhhBBCiMVw1QUVDoeDbdu2sW3bNhwOx7VYk7gCHpsJu1nbmVBQ2FDaFet5XXqiEJcjXyjy/JlpoiktkDk8GOQXJ/wA3LO+hoe21KMwG4TZTHru21hHV+31+d332Ey8aXMd6+srn7+pysrv3rOGGqeZaDrPN5/vZyKqBWPxdCmlUoIxIYQQQixhV335+tSpUwwNDZ3XlONtb3vb1T61uExNHmt5mO76eicvnQvQ7Y+hqiqKohBO5ohn8tdst0KsTKqqsr8vwFQsA0DvRIwfHxkF4M61NTywqb7i/l67ibvW1WA16c97rmvJoNexs81LjcPC/r5pZiYyeKwmPnJHB996oR9/NMPf7+vjN2/voNFtJZEp8HT3JA9srLvu6xNCCCGEmI95n5n39fXxzne+k+PHj6MoSrkhxEzKUqEgdRoLpXFOINZRbcekV4hn8oyGUzRXaR0TR0My3Flc2tHhMMNBbfd0PJLisYNDFFXY3uzmTZvrKu5b7TBx9/paTIaF61LY6rNhN9fxfO8UqawWjTnMRn77jk6+/eIAo+EU33qhn4/e0Umty0I8nefp7knu21h7Xj2bEEIIIcRim/dZ1Cc/+Uk6OjqYnJzEZrNx8uRJnn/+eXbt2sWzzz57DZco3kidy4Kh1NXAoNOxtlbSE8WVGQ4mOT2uHS+xdI7vvDRAJl+ko9rGu3Y2V9SE1bnM3LNhYYOwGT6HmTdtrsdjm60bs5kM/NbtHTR7rCSzBb71Yn958HMklePZnkmyeRlsLoQQQoilZd5nUvv37+fP//zPqa6uRqfTodPpuP322/nCF77A7//+71/LNYo3oNcp1Ltn24jP7HzNbWM/EU2TK8jJqDhfJJVjf18AgGKxyPcODhFL56lxmnnf7nYMutk/EzVOM3etq8G4iPO6bCYD926oxWufHd1gMer50G3t1JZqxr71Yj+xtDaAOpjI8eLZaYpFGeMghBBCiKVj3mdThUIBp1M74a+urmZsTGtt3dbWRk9Pz7VZnbhsTVXnt7EfDafKJ6NFFfyR9KKsTSxduUKRF3qnyZeGKP/y1AQDgSQmvcL7bmmtqK9yWQ3cua56SQxNthj13LuhlhqnuXybzWTgN2/rwGMzEkhk+fZLA+UxDuORNAcHgou1XCGEEEKI88z7jGrLli289tprAOzevZv//b//Ny+++CJ//ud/Tmdn5zVboLg8c+eJOS3G8sdz0xNHQpKeKCq9MhAkktKC9ZNjEfb1TgPwrp0tFcOarSYdd6+vxWxYOrVWJoOOe9bXUDsnGHNZjfzWbR04zAb8kTTfOzhEsajtBPdNJTgxGlms5QohhBBCVJh3IPYnf/In5ROcz33uc/T393PHHXfw+OOP86UvfemaLVBcHotRj88xm6q1oZyeGC3fNhZOlZuqCDEYSDAwnQQglMjyo8MjANy6xsfWJnf5fgadwl3rrt2MsGvJoNdx57qaijRFn8PMB/a0YdArnJmI87Nj46hox/2xkQj904nFWq4QQgghRNm8A7E3velN/Pqv/zoAa9eupbu7m+npaSYnJ7nvvvuu2QLF5Zu7K7ah3gXA2ck4+VLAnMkXmY5nL/hYsboks3kO9mupekVV5YeHh8nki7R6rbx5S2Wb+ps6vBWBzlJjMui4Z0NNRQOP5iob79nVAsCB/iAvnp0uf+5gf4BAPLPg6xRCCCGEmOuKL3H/5m/+5mXd71vf+tYVL0ZcneYqK8dGtNSrRo8Fh9lAPJOnfzpR7qQ4Gk5V1NWI1UdVVV7uC5Ar1YW90Dtdrgt7z65W9HOac6yrc9BRbV+spV42s0HPPetr+dUpP4mMVhe2udHNm7fU84sTfh4/7qfWaWFdnZNCEfb1TvPQlnppay+EEEKIRXPFO2Lf+c53eOaZZwiHw4RCoYu+iYXnsZmwm7UTS0VRZtMTx6WNvZjVMxHDH9F2hMYjKfaemgDgLdsaqapI8TNxY2vVoqxxPqwm/XmzzW5fW82uNu17+MErwwRLbe2T2QL7eqWTohBCCCEWzxXviP3u7/4u3/ve9+jv7+fDH/4w73vf+/B6vddjbWIemuYMd15f7+TQYIgef4y3bFdRUAgnc8Qz+SVZ7yOuv1g6x2vDYQDyxSI/PDRMQVXZUO9kZ/ts0GUy6Li9qxqdTrnIMy1NbquRO9dV80z3JIUiKCi8bUcj/miakVCK/3dgkN+9aw1GvY6pWIbDQyFuape/X0IIIYRYeFe8I/bVr36V8fFx/viP/5if/exntLS08O53v5tf/vKX0ghiCZjbxr6r1oFeUQgms0zFZmtiRqV74qp1sD/IzDi5Z3um8Ecz2E163nlDEwqzQdfN7V7syzRYr3Va2NNZXf7YoNPx6O5WHGY9/kiaf391pNy8o3ciztnJ2MWeSgghhBDiuplXsw6z2cx73/te9u7dy6lTp9i8eTO/93u/R3t7O/F4/FqvUVyBWqcFQ2kXw2zQ01Gj1ffMbWMv6Ymr07mpOBNRLSCfjKV5rmcSgLfuaMRpmW100V5to9VnW5Q1XiutPhtbmlzlj91WE4/c3IqiwGsjEV46Gyh/7tBAiGlp3iGEEEKIBXbVk1l1Oh2KoqCqKoVC4VqsSVwFvU6h3j07/+lCbewnommy+eKCr00snnSuwJGhMKA16/jxkVEKqnZ8zG1Vbzfr2dW2MlL1tja5K3aIO6sdPLylAYDHT4xzbkq7aFRU4cWz0+Xhz0IIIYQQC2FegVgmk+F73/seDzzwAOvWreP48eN85StfYWhoCIfDca3XKK7Q3JPPmTb2A4EkqZx2ollUtWBMrB6HB0Pl4PvQYIjBUpfEt+1orEhJvKXTV9HsYjlTFIU9nT5c1tkUy1u7fOxodqOqWvOOWFobZp3IFHi5L7hYSxVCCCHEKnTFZ1y/93u/R0NDA3/5l3/JW97yFoaHh/nhD3/Iww8/jE63Mk7glru588S8dhM1TjOqCr0Ts+mJI1IntmqMR1IMBrTBzbF0jsePjwPwwKZ6PNbZLoldtQ7qXJYLPsdyZTJoA5+Nei3YVFB4543N1DrNxDN5fnh4pFzbOhpKcXo8eqmnE0IIIYS4Zq64Gv/rX/86ra2tdHZ28txzz/Hcc89d8H7//u//ftWLE/NjMerxOUwESsObN9Q7mYpl6PHH2NbsAbQ6MVVVUZTl1RVPXJliUeXw4Ow4iSdO+MnkizR5rOxZ4yvfbjXp2NHiWYQVXn8ui5Fbu6p5rmcKAKNex3+9uZWvPHuWs5Nxnjszxd3rawE4Ohym2mGWWXtCCCGEuO6ueAvrAx/4APfccw8ejwe3233RN7G45u6KrS/VifVMxCiWrv5n8kWmS4GaWLl6JmJEU3kABoMJjpRa1799RyO6OUH4rjbviklJvJAmj5VtzbN/l2pdFt62rRGAvacnGAgkAFBL9WLpnNSLCSGEEOL6uuIdse985zvXYRniWmuusnJsJAJAm9eGxaAjmS0wHErS5tU6KY6GU3LlfwVLZQscH9WOAVVV+flrWkrizjYPzVWzXRFbvFZavMu7S+Ll2NzoYiqWYTyi1UfubK+ibyrO0ZEIP3hliE/cuxabyUAyW+DlvgB3rauRHWMhhBBCXDfLc1CQeEMemwm7WU8iU0Cv07G2zsnx0Qjd47HZQCyUWrHpaAKODIfIF7Qd0MODIUbDKcwGHQ9uqi/fx6BX2NlWdbGnWFEURWHPGh9PnPCTzBZQUHj7DU0Mh1ME4ll+dHiE9+9pQ0FhLJzmzES8vJssxEJJ5wpEUzmi6RzRdJ5UtkA6VyCTL5IrFCmqKsVS01uDXsGo12HQKVhNemwmA3azHofZgMdmwrFMZwEKIcRqIX+lV7Amj5UzE1qL7g0NWiDW44/yps3aiXgklSOeycuL9Qo0FcswMK016EjnCvzqlB+A+zbWVswM29LoxmZaPf/+FqOeW7t8PHV6ElXVZu299+ZW/u7Zc3T7Y+w/F+DWNdow6CNDIWqdZqrspjd4ViHmL5LKMRFNMx3LMBXPkMhcflpsJg9w8fsb9Qoem9awqcZppsZhXtEpyEIIsdysnjOwVaipajYQW1enXdn3RzOEU9lyt7zRUEqu+q9Arw7NNuh4pmeSeKZAjcPELZ2zDTpcVkN5ztxqUuu0sK3ZzWvDWtpmo9vKw1vq+dmxcX5xws+aGq17ZFGFF89N89Dmegx6OXkV14aqqkzGMoyEkoyG08TT+Td+DCrZfJFUroBapFzrazLosBj1GPRKxRiKGbmCylQsw1RMG1iuKOCzm2j0WGmusuKxyUUGIYRYTBKIrWC1TgsGvUK+oGI3GWj12hgKJunxx9jdoZ2Qj4UlEFtphgLJcsfMUCLLS2cDADy8tQHDnBETO9uq0OlWZw3UpgatXmwsrNWL3bLGx5mJGD0TcX7wyhC/d08XBp2OaCrPkeEwN7WvjCHXYvFEUjn6pxMMBhIX3fVK5wqMhFKMR1JaABXPEE5miWcKFIrqRZ9bryi4bUY8NiNVNiN1LgsNbisNbkvFjreqwnQ8y3Q8y7GRCA6LgXafjfZqO645O+VCCCEWhgRiK5hep9DgtjAc1GaGbah3nheITUTT5ApFjHLFf0UoFFWOjoTLH+89PUFBVemssbNuTsDdXGWlwW29wDOsDoqicEtnZb3Yr9/YzN8+1Ys/muFXJ/08vFXrqtg7EafeZVkVDU3EtaWqKqPhFD3+GBPRzHmfzxeL9E8l6PbH6J+O47/AfebSK6DolHK742ypBrSgqgQTWYKJ8zvh+hwmOqvtdFTbWVPjqEhNjqfznBiNcmI0is9hoqPaTqvXhsWon/83LYQQ4rJJILbCNXms5UBsfb2TX52a4OxUvBx8FVXwR9JykrlC9E7GyqlOY+EUR0vt6h/e0lBOXdLr4MZV0qDjUixGPbeu8fHk6UkAnBYj79rZzD/vH+SFswHW1jlZW6sFrwf6g/gcplVVTyfmr1hU6ZuOc2o8dl7qYaFY5MxEnKPDYXr80XIwNcNjM9JSZSvVdJnwOsw4TAbsFj0mfWWApKoqmXyRVLZAJJUjlNSCMX8kzXgkTTCZJRDX3l4Z0NKVm6usbGpwsbnJRY1jdoD7zP2ODIVo99lZX++U1EUhhLjO5KxihWucM0+s3m3BbTUQSeXpm4qzvt4FaG3sJRBb/jL5AidGo4BWU/L4Ca1d/Y5md8VxsK7OKQ1aSmpdFjY3ujg5pv3cNtS72N3h5UB/kB8dHuGT92kt7bP5IvvPBbh3Q620tBcXNROAnRyLnpd+OB3P8HJfgKPDYZLZ2c85zQY2NGhBf5vPVrFj9UYURcFi1GMx6qmym2jHXvH5VLbAYDBB31ScvukEY+E0I6EUI6EUvzo1QXOVlRtbPWxr9pQvMhSKcG4qwbmpBLVOM+vrnTRXWeW4F0KI60DOxlY4i1GPz2EiEM+ioLC+3sXB/iDd/lg5EBsLp1BVVV5ol7lTY1Gyea2vde9EjL6pBHpF4YE57erNBh2bG2Xg+lxbm9z4o+lyXd3DWxvom4ozFc/y76+O8OgtWkv7iWiGU+NR+fmJCxoKJDk6Eq7YAVNR6ZtK8OLZabr9sfLtDrOBHS1utjV7aPJcvyDHatKzod7FhtLf+mg6R/d4jFPjEXon4+Wg7D+PjbO+3snuDh9ddY7y7vlkLMNkLIPTYmBzo4t2n33V1pUKIcT1IIHYKtDksZZPMjfUOznYH6THH0NFRUEhnSsSSGSpdshw5+UqlS3QW+qQqaoqvzw5AcCeNd6K9utbmtzSvvp1dDqFW9f4+MUJP/mCilGv4z03tfJ3z57l1HiMwwMhdpWadRwfiVDnssjviigLxDO8OhQudyYELQA7N5ngydMTDAWT5dvX1zu5pcPL2loHOt0b/x7azXqcFgNWowGzUYfZoEOvU9ApCqqq1ZjlCiqZXIFkrkAikyeRyVMoXvj5XBYjN3d4ubnDSzyT47XhCK8OhRiPpDk1HuPUeIxap5lb11RzQ6unXDscS+d5uS/I8dEImxtddFQ70EtAJoQQV00CsVWgyWPl2IjWqntNjQODTiFcml1T79JS1sbCKTm5XMZOjkXIl7qqnRyLMh5JYzbouHt9bfk+TouBtbWOxVrikua0GLm53ctL57QOk40eKw9squeJk35+fmyM9mo71Q4zRRVeOhfgzVvqpcHNKpcrFHltOFweETJjKJjgiRN+BgJaAGbQaUPTb+vyUT2nJuv1TAYdtaV5X9UOMx6bcV7HWLGoEkvnCSWzBBJa6/pQMof6uqaLDrOR27qqua2rGn80xSv9IQ4PBpmMZfjJ0VF+ecrP7g4vt63xYTdr6ZKJTIGD/SFOjEbZ0uSms1p2yIQQ4mpIILYKVNlN2Ex6ktkCRr2ONTV2eibidPtjFYHYtmbP4i5UzEs8k+fspHYyWFRVnjyt7Ybd1lVd0VxiR4tHTpouob3azlgkVR6Efcfaas5MxOibTvCvh4b5nTs70et0xNN5Dg+GKmayidVlJJTk0ECootYrnMryxAl/+aKXXqdwc7uXu9fXXLTuy27W0+K10eyxUu0wX5PfT51Oa2Xvthlpr9ZqxrL5Iv5ImtFwirFwiky+csus3mXlrdutPLCpjsODIV46N00omePZnilePDvNLZ0+7lhbjaMUkCWzhVKKe5TtzR6pMRZCiHmSQGyVaKqyllPX1je46JmI0zMe4+512o5JMJEjmc1LV7hl6MRohJkRQ8dHwkzGMlgMOm7rqi7fx+cwycnSZdjV5mU6niWezqMoCv9lVzN/+2QvI6EUz/RMcf/GOgD6phI0uq20+uRnupqksgUOD4Yq0g0LxSL7eqd5unuyvCu9s83DAxvrcVnPD8D0Omj12umssVPrNC9Iba7JoKPVZ6PVZ6NYVJmIpemfTjASTJXXDFpN8W1d1exZ4+P0eJRne6YYDafY1zvN/r4At3R4uWPtbGAZTeXZ1zuNz2FiR4uHOtfFd/yEEEKcT866V4lGz2wgtqHeyU+BoWCyIvgaC6foqpXhzsvJzJBYgGKxyJPdWiv2O9fVYJ0zC2i77HZeFpNBx61rfOw9NYGqgsdq4h03NPH9V4Z5pnuStXUO2rzaLsOB/gA+hwm7dKBcFYaDSQ72Byt2k0ZCSf79yCj+iDYYvN1n4y3bGiu6lM6wmnSsrXXSVetY1DldOp1SGvZsJddeZDSU4uxknMk5NW46RWFzo5tNjS7O+GM81T3JSCjFC2cDHOwPcvvaGu5YW43ZoH0fgXiWp05P0uCxcEOLR9reCyHEZZIziFWizmnGoFPIF1U8VhP1LjP+aIYzEzF2tGgzpUbDaQnElpkTo5Fy7cerw2EC8Sw2k549a2bT5upcZurdcqX6clU7zGxtcpdTzLY1e+j2xzg6HOaHr4zwifu6MBv05Aoq+88FuG+jtLRfyfKFIkeGw+ULWaDVhz15eoIXeqdR0boTvmVrAztaPeWOgzNsJj2bG1101iy9BhdGvY72ajvt1XbCySw9/hgDgUS52cdMp9119U56J2I8eVoLyJ7unuRgf4B7N9ZxU1sV+lLjkfFwGn/Ez9paB1ua3DIYWiwZxaJKvqhSKFYWS8786TboFAxS9ysWgQRiq4RBr6PWZWYsrF25XV/vwh+dots/G4hNRNLkC0X5Y7RMhBJZBksNAfLFIk+XBhPfta6mfKUakNq/edjc6GI8ki53wnvb9kYGphMEk1l+fmyMd93YAmjtvaWl/coVSmR58dw00dRsS/rhUJJ/fWWYQELrRLut2c1btjWU66dmmA06tjS56apdegHYhXhsJnZ3+tje4uHcVJwef4x0TovIFBTW1blYW+fk5GiUX570E0hk+enRMV46O82bNtezqdGFgtbN8cxEnIFAkq1N7lKHyKX//YvlJ5svksjkiZfeUrkC6VyBTK5IJl8gns7x6qRC/NAIiu7yLgoY9AoGnYJRr8Ni1GM26Eqz+nTYTHrsZgM2kwG7SS/nSuKakEBsFWmuspYDsQ31Tp47M8UZf4xisYhOpyNfVJmIZWi6QFqNWHqOjUbK7x8eDBFO5XCYDRVNJBo9Fmqc0g3zSimK1tL+8ePj5AoqFqOe39jVzN/v6+fwYJgN9a5y8HV8JEK9y4JPuo6uKGcmYrw6GCrXX6qqyvO90+w95aeogttq4O07msozumboFFhX72Rzo6vigshyYTHq2dzoZn2dk3NTCU6NR0hlZwOyLU1uNjY4eWUgyFOnJ5mOZ/nugSFavTbeuq2Rpirt9SObL3J4MMTZyTg3tnlocMvripifdK5AJJUjnMwRTmaJpHJE0/ny3MyLKRQKFFQoqnC5v4n5gkq+oJLOFYnNmQl4IVaTDpvJgNNswGU14rZqTXKcZoNkSYjLJoHYKqLVLYQAaPHasJr0pLIFhoKpcnetsXBKArFlIBDPMBpKAVqa1DOl2rB71tdUtLyW2rD5s5sN3Nzh5cWzWkv7jmoHd62r4bkzU/z7kVFavDZcFiNFFV6UlvYrRr5Q5OBAsNw9EyCWzvHDQyOcndLSE7c2uXnHDU0VdZgANU4zN3d4cV+gScdyY9DrWF+v1bT1TcU5ORYtd4nU63Tc0lnNjpYq9vVO8cLZaYaCSb767Fl2tVXx4Oa68g5hJJXjme4pmqqs3NjqwbL8YlOxgPKFIsFElum4Nn4hEM9WdCedD1VVyRYK5PJFckUVVZ1NSVTQaiLNRh1Gne6KAqhUtkgqmy3PaZ2h12kz+9xWI1V2E167iSqbSWZ4igtatoFYMBjkE5/4BD/72c/Q6XS8613v4ktf+hIOx4XnJAWDQf7sz/6MX/3qVwwNDVFTU8M73vEOPv/5z+N2r460IpvJQJXNSCiZQ6corK91cHQkwml/tCIQE0vfibFo+f1DA0Gi6Txuq4GbOrzl21u9tophzuLKtfnsjIXT5YYo922spXcyxlg4zY8Oj/DhW9tRFEVa2q8QsXSOfb3ThJO58m09E1F+eGikNP5D4a3bGtnZXlVRC2bUK9zQ6mFNjWPFXQnX6xTW1jnpqLZzZiLOqfFoeSfCYtTzwKZ6dnf4eOLEOEdHIhwaDHF8NMIDm+rY3eEt14+NhlKMh1OsqbZedOC0WH0KRZXpeIaJaBp/JE0gkT1v5t3FpLIFQskswYT2FknlSGS1NMVEOk8imyeV1fGDvtOXvR6TXsFk0GM16XGY9DgsRhxmPQ6zAbfNhNdmospuxGUxXvR3vVCEUDJHKJkrzxMEbZanz26iym7C5zDhs5uXRdqyuL6WbSD26KOPMj4+zt69e8nlcnz4wx/mox/9KI899tgF7z82NsbY2Bhf/OIX2bRpE4ODg/y3//bfGBsb40c/+tECr37xNFVZCZVOMtbXOzk6EqHHH+PNWxoAbWBnOJmVrldLWCiRLe+G5YtFnu+dAuCu9bUYSic9igJbm1fHBYbrbVd7FVPxDPF0HoNOx7t3tfCVZ85ydjLO/r4At67RxgRIS/vlbTSc4qWz0+QK2lmgqqo83T3JU6Xd5ga3hUdubqHmdUOZm6us3NTuxWpa2Vs9Br2OTY0u1tTaOT0eo8cfLQdULquRd9/Uys2dCX722hjjkTQ/PzbOwf4gb93eyJoa7QJpUYVuf5yegMKW6QRr690rLnAVbyyYyDIWTjEZ0+pw3ygwT2ULjEdTTEbT+KMZJiJpJqJp0m+QmqipPL70Ou0SisrsfwpzAr9sQSVb0IK5qUs8q15R8NiNVNlM1DjM1Lks1LnN1DktF21SE0vniaXz5eBMp4DXbqLaaabGoQ1zlwY3q8+yDMROnz7NE088wSuvvMKuXbsA+PKXv8zDDz/MF7/4RRobG897zJYtW/i3f/u38sdr1qzhf/7P/8n73vc+8vk8BsOy/FFcsUaPlROj2m7K2joniqI1HAglsuXdk5FQSgKxJezE2Gxt2JGhMJFUHqfZwM7WqvLt7T77ikiPWgqM+sqW9rVOCw9vqeenr43zixN+1tQ4yvOTpKX98nRyLMJrw7O/V+lcgX89NEy3PwbA7g4vv7atoXyhA7Si/l1tVXTWXDgLY6UyG/TsaPGwrs7B8ZEIfdOJ8g5Gu8/Ox+7p4tBAiF+d8jMZy/CPL/SzudHFw1sbqCq9ruSKcKA/RH8wza62KqmvXOEKRZWJqDZQfDSUumSqYbFYxB/NMBRKMhzU3qZfl/o3l8NsoKoUEFXZTDjMBhxmPTazAatBYaj/LFs2bcRiMlw09VBFqwvL5Atk89r/k9mCtrNWagQSS2s7XKFElnAqR0FVCcS1tMSzk/GK53NbDdQ6LTS4rTRXWWnyWPHYjed1VC2qMB3X0jC70f7WOCyGclBW4zDjtsnr+Eq3LM8W9u/fj8fjKQdhAPfffz86nY4DBw7wzne+87KeJxKJ4HK5LhmEZTIZMpnZ+SrRqBbE5HI5crncxR62ZLlMCgZFJZMvYtYrtFZZGQymOD0eYXcprW04EGd9rVzVX2wzx9fc4yyczDFQqlMpFos826Ndrb+9y4cOlUKhgKLA+lrbsjw+lyq3WcfGOjvHSxcxdrV5OD0eo3cyzg9eGeJ37uzAoNNRKMC+MxPcu75mWV3pv9CxthoUiiqHBkP0z6kHm4yleezgCIFEFr1O4W3b6rmxtQpU7fcLwGc3cUunF6fFsOp+ZjOMCtzY4qLTZ+XIcJiJ6Ozr5M5WNxvrHTzdM8nB/hAnx6L0TMS4s6uaWzs9gNZIYTKS4vFjKTqqbWxvlnb3K0k2X2QskmIklMYfTZMvXDjfUEVlMprh3HSC/ukE/dPJill9MzxWg7br5DJT69T+77ObLlmXWygUCBjAolfQo71mXowOsBp0WA3wRq09isUikXSecDJHMJllKpZhIpphIpYhls4TSeWJpOL0zgnQbCY9TR4LjW4rzVUWWr228gzXuSKJApFEhrMT2sdmg45qp6kcnFVZjdKFdAm6mteBZRmI+f1+amtrK24zGAx4vV78fv9lPcf09DSf//zn+ehHP3rJ+33hC1/gc5/73Hm3P/PMM9hsyzNYGYooTGnNE3FrpaocOjuGPTFavk/inIpR6kqXhL1795bf74koBEr/dgMxhVBSh0mnYk2MceLEGAA1Ftg3eWwxlrqiqSoMhhRipb+3Gy0wqNPhj2b4/r5T7PDNnmicO67SbF+khV6FucfaSpcrQnd49t8TYDSh8PKkQl5VsOpVbq8vYIqOcOLESPk+TXYVhx32DSz8mpeyXBoG4wrpOZsd7Qp4muDVgMJUWsfTPVMcODfJDT4F9dSpcsOEE8DjCrTYVeptWsqWWH4KKoQyMJ1WCGVKmX8XkC7AeFLBn4SJtEKmUPkPblRUfBYVrxl8FvCaVSz6ApCBAhCG6TBMX+a6Tp8+Ne/v6Y2YgWag2Qk4IVuASBYiWYVQFoIZhUgWktkCvZMJeicT5cc6jSo1FpVqC/jMKk7jbBORi9Ep4DSCy6jiMoHDCHr5fVl0yWTyje90EUsqEPv0pz/NX/3VX13yPqdPX37R5cVEo1F+7dd+jU2bNvHZz372kvf9zGc+w6c+9amKx7a0tHDPPffg8y3PwvzhUJIXzwYBqI2mOfZsH1MZPes2rsOk164EbeuooqN6GZ5JriC5XI69e/fywAMPYDQaiaZyRE9M0IBWv/LUM+eALHetq+WGdTWA9kf8zZvrcEla4nVxdybPEycnynVEjvoojx0coSei49bNbXSWfmd0CuzeWItvmTRLef2xttJFUzme752mrU6LGlRU9vcFeaFPuwzd4bPxnpuasc+5Ym026Nizxku9S4ajX0yhqNIzEePUeKxiB+Q2VE6MRvnFyQli6TwvTCh01dh4y7YGfPbKtESdxcANrR4aZAj9slAoqoxH0gwGk4yF05iKKo3A6wtEAoks3f4op/1xhgLJiiDNoFdo99roqLazpsZOg9uC7gozCvQ6BYdZX575ZTbo0VPk8MGXueP227CYjRh0usoasZKiqqUmFkpDn3OFItl8kXS+QCZfJJMrkswWSOUKl91IZK58QUu3HI2kGA2nGAmmmIpnieUUYjmFPi0rEbtJT6vXRpvPSrvPToPLjE536SviqVKdmZbKaKLaYZbujIsgEAjM+7FLKhD7wz/8Qz70oQ9d8j6dnZ3U19czOTlZcXs+nycYDFJfX3/Jx8diMR566CGcTic//vGP3/Ckw2w2Yzafn79uNBqX7QlLs9eJ0RChqEJ9lQ2PzailvAXSbGzQZuJMxvOsa1ie399KM3Os9QxF0JcC5ROjEabjWSwGHXu6asq3t/ts+FzLc6d2OfAYjezpqim3tN/SVMVN7QleGQjx70dG+f1715WbNrwyGOGhZdbSfjn/Xbtc/kiafb0BcgXQ6/UUi0UeP+5nf592cermDi9v3dZQ7vYH2onOHWurpfbvDRiB7a0+1tV7ODocLncbBdjR6mVjo5unT0/wwtlpzk4l+fLTfdy+tpq7188OoU/kVF44Fyq3u3daVvbxuFxNxzP0TycYDCRn53kpOvRzsvomomleGwlzaizKZCxT8fh6t4WN9U7W1Dpo9doq6i8vxWEx4LEa8di0zoUOiwGH2XDBtNZcLsfoCVhb774mf9eKRZVUrlCuG0tkCsTSudJcs9xFm47o9Xraqo20Vc/WkyazeQYDSQYCCYYCSUZCKRLZAqf9MU6XalNNeoU2n532ahsdPgdNVdYLvp6EUgVCqSRnJrVdmSqbkRqnlsJZ4zSv+EZCS8HVHF9L6lWlpqaGmpqaN7zfnj17CIfDHD58mJ07dwLw9NNPUywW2b1790UfF41GedOb3oTZbOanP/0pFsvqvOJmMuiodZnxRzIoKGyod/JyX5Buf6wciI1HUhSLquQiLxHRdI7BUqclFZWnS7Vht3ZVV7wAzQwZFtfP61vaP7y1gb6pBIFElp8cHeWRm1tQUIhJS/sl5+xknFcGguWr2pl8ge8fHKJnQqvlePOWem5fW11RVL+mxs6udq+0mb4CVpOePWt8rKtzcGgwVJ6zZDboeXBTHY70JGezLnonEzx3ZoojQyEe3trA1mZ3+Wc/0+5+Y4OLTY2uZXVBY6VKZPL0TycYCCSIpi487DiYyHJsJMxrw2Em5gRfOgU6qu1sbHCxscFVbtxyKQ6LgWq7CZ/DjM9hwmM1YljE40CnU7CbDdjNBmpf9zlVVYln8kRSufLw6WAie9Gh0DaTofyzAG0e6Fg4xUAgyWBAq5fL5Iv0Ts7Umk2i1ym0VFlpr7bT7rPT5rNdcGj8TOv8M6W/aw6LgVqnuRScmeXixhKzpAKxy7Vx40YeeughPvKRj/D1r3+dXC7Hxz/+cR555JFyx8TR0VHuu+8+/vmf/5mbb76ZaDTKgw8+SDKZ5P/9v/9HNBotN96oqZndUVgtmjw2/BHtj+RMINbjj6LSiIJCrqAyFc+Uu8GJxXVqLFo+eezxx/BH0pj0CreumT3Jb/XapMPSApnb0t5s0PPum1r4+nPnOD4aYeOwkx0tWgdLaWm/dBwfiXB8dLYzYiSV5Z/2D+KPpDHoFd6zq6XiQoZOgV3tXrpqV1dXxGvJ5zDz4KY6+qcTvDYSJpXVtgxcJnj/ja30Tib5+bExQskc339lmAP9Ad62van8ulNU4eRYlL7pONuaPXRW25dVE5yVIFcoMhzUdm5mzhleL5bOcWwkwmsjYUZCs7NI9YrCunoH25rcrKt3nTcA/fVcVgP1Lgt1Lsuya+WuKApOixGnxUjzbANjsvlixayz6XiGROb8rpFGvY42n502nx2ooahqnSZndh37pxPEM1rre639/RSKAo1uKx3VttLOmb0inXpGPJ0nns7TN6VdPLSadNQ4LNS6tM6MHtvFZ6KJy5O/iuGIyzIQA/jud7/Lxz/+ce67777yQOe//du/LX8+l8vR09NTLqB79dVXOXDgAABdXV0Vz9Xf3097e/uCrX0paPRYODyovd9R7cCoV4im84xH0jS6rYDWxl4CscWXyOQZKO2+qKg8U9oN293pq+i6tKXJtSjrW41e39K+pcrGfRtqefL0JP9xdIw2n718xffl/gBVdqNchVwkxaLKKwNBzk3NpsmNhVP80/4BYuk8DrOBD+xpo7lqNlg2GXTcubaaWvn7d9UURaGzxkGL18aJ0QinRsPa7ShsbHDRVetgX+8Uz/ZM0T+d5G+f7mVPp4/7N9aVT8RT2SIH+oJ0j8fY3uKu+LcS18dkNM25qQTDwST54vmFUblCkVNjEQ4PhTk3GS/XXCnAmhoH25rdbG5yXzL4shh1NLit1Lst1LssKzKFzmTQlbo9zv4tSWULTMczTMUzTJXGB73+R6xTFBrcVhrcVm5do732B+IZBqaT9Jd2zMLJnDYSIJzihVK6fK3TTHu1nQ6fjfZqO27r+TuPqWyRoWCSoaB2fmzUK3hLg6a1gdUmXBaDBGcXkM4VtFTUUjpqNJUnms4xMbVCasSuhNfrvejwZoD29nbUOVWVd999d8XHq53TYsRlNRBN5THqdaypcdDtj9EzHi0HYmPhFDvbqt7gmcT11jMRL/+R7p9OMBxModcp3N5VXb5Pc5VVZr8tsGqHma1Nbo6NaLssd6+r4cxEjKFgih8eGua3b+9Ap9ORL6i80DvNg5vrJb1tgeULRV48FygPQAc4NxXnX/YPkC2o1DrNfPDW9oo0KZfVwF3raiRwvsaMeh03tFbRVmVmuOd4xe33bqjjhpYqHj8+zsnxKC+dC3BsJMybNmujA2ZOCCOpHM+fmabGaeaGVg/VMn/smppJPeybThC/QEqdispoKMXhwRCvDYcrBiq3eq1sa/awtcl9yd8dj81Ik8dKU5UVn920Kk/2rSY9LV4bLV7tgkK+UCSYyJYDs+l4drburkRBodphodphYVe7NmoonMoyOJ2gP5BkYDrBZCxTfjvYr9W8VtmMpcBM2zHzOUznzTPLFVSt/f6cERQGvUKVzYS3NKPNZTXithpXRYpwOlcoDd/OlWbIae/H0vlyo65radkGYuLqNXqsRFNaUeiGehfd/hjdEzHu2VAHaFPgo+kcLjkhWTS5ItqVfEX747fvzBQAO9uqKl7stjRJbdhi2NzoYjySZiqWQafT8Ru7WvjyU70MBJI83TPF/Ru136VQMserQyFuKr2AiusvnSvw3Jmpcn0SwLHRMD98ZZiCCp3Vdt53S1tF+lO928xtXdUXrLsQ14bTYmRjlcqOtT6OjcXLNTRVdhOP3tJG72SMn782xlQ8y7+9OsqBviAPba2nc06jg6lYhl+dnKDFa2Vbk0dSsq9CvlBkJJSifzrBeCR9wfvEMzmODoc5PBCqqPvyWI3c2FbFja1VeC/RIbbGaabVa6OpyopDGt6cx6DXUeuylHfgVVUlmsozGdNeWyZjmQsOwfZYTXhaTGwvpcInMjkGSmmMg4EkY+GUVi82FObIUBjQBmB3VNtpL+2Y1bssFwyG8wWVqZgWGM5lM+lxW424rEZcFgMOi1YzZzcZls2Fxmy+SCKTJ5HNk8xqzVcSmUJ5cPf1CLYuRX4jVrFmj5Xu8ZlAzAnAcDBFIpPDbtZe2EZDKVzSPXHR+JPgLqro9eCPpuiZiKMAd6yd3Q1r8Fgu+SIorh9F0er0Hj8+Tq6g4rObeecNTfzg0AhPd0+W2jFrJ5C9E3FqHFraiLi+4pk8z3RPVhTK7z83zc+OjQNaGu+7d7VUdGrrqnWwq61KGhQtkEaPlRafk25/jBNjkXK7+7W1Tj5x31r2nwvw1OkJRsIp/mFfPxvqnTy0ub4iXXQ4mGI4mKLVa2NLk0uyAq7ATNfDgenEBU88C8UiZybiHB7UGnnNZGUYdAqbG13sbPOypubiNXs+h4k2n+2ig4vFxSmKgttmxG0zsrZOOzeLZ/JaUBZNMxXPXLBZit1sZHOju1zrms4VGAomysHZSDBFPJPn+OhsvazFoKO9WqtNa/JYafRYLvnvlcwWSGYLFwzabSZ9qZmJNkbAapwdJzDzvlGvu+YBm6qq5Ara2IFMvkg6Vyi9aSMI0lltDEEqpwVbFxsufllfC5V4Wvu3mNnBnIplGF+NqYni6lU7zBj1WmMOl9VIg9vCeCRNz0ScG1u1KyyjoVS5q49YWLlCkfGkwsxe174z2vjKLU3uitk7mxvl32cx2c0Gbu7wllvab2+p4txUgkODIX7wyjCfuLervHt5cCBIld2EW+a8XTfBRJbnzkyWG0OoqOw9NcGzPdpu8u4OL2/d3lgxp+iGVo/8nVsEOp3CpkYXHdX2inb3Bp2OO9bWsKPFw9Pdkxwc0IKBHn+MXe1V3L+xriIjYKbeRQKyS0tlCwwEEvRNJYikche8z2QszeHBEEeGwsQzsyf7zVVWdrZVsa3Zc9G6L4/NSJtPaxwhO1/XlsNsKO9mgRZkabtl2q5ZKJk7b8aZxahnXZ2LdXWznRlHQloaY38gyVAgQTpf1LKhSi3zAdxWAw1uK40eK41uCw0eq9bQg0sHUDNB2lTskndDp2i7gEa9glGvw6BTtPluihaEKmg1cooCqqrNeZv5f6GoUlQhXyySKxTJFdSrCqwuJlsoMB3T0kWnYxmm41rK6HQ8QyZ/fmOO4gUasFwu+U1ZxXQ6hUaPtdwWfUO9UwvE/LFyIDYVz5DOFZZV96KVom8qQb709yWcyvLaSBiAO9fOjniodpiodUpDgcXW5rMzGcvQW2oX/NbtjQwHk0zEMvzw0Agfvq0dRVHIF1RePDvNg5vqFrUN80rlj6R5vneq/MJcLBb5ydExDg2GALh/Yy33bKgtn1DodbCns1q6Wi6ymXb3a+scHBoIEUxo6aROi5G372ji1i4fvzzh59R4jFcGQhwdDnN7VzW3d9VUNHiYCcga3BY2Nriol6HQZPPayfdgIIk/mr7gQOJ0rsDx0QiHBoMMB2frKR1mPTtaPOxs8160cZfZoNPmXFU7JDNjAVmMlXVm2XyRQCLDZFRLZQwmMufNNTPqdXRUO+iodnAP2q7neETrzDgc0gZyBxNZIqk8kVRlcGY26LSh0TNvDu3/PrupYubi5Siq2nqzeYD5BzBXo6iqxNI5QolcuatlOJklmMwSiGeJXmTsAGgNaarsJqodpvK8NruS5n/+zfzWIoHYKtc0JxBbX+/kmZ4pzkzEKBSL6HU6VBVGw6lyepVYGMWiSnfppB7ghd5piqo206ipylq+fbPUhi0ZN7ZWEYhnCCZyGPU63ntzK1999ixnp+I8e2aSe9Zr9WLhZI6D/UFundNsRVy9wUCC/ecC5RSqXKHI9w4O0e2PoQDvuKGpokbPqFe4a12NdEZcQqodZt60uY6+6QTH5rS7r3FYeN8t7QwEEvzixDjDwRTP9Ezx0rkAt3dVc9vr5imOR9KMR9J4bEY2Nrho9dqWTf3KtVAoqoyFUwwGkoyGkxccNKyqKv3TCQ4PhTg+OpsaqijaRdmdrVWsr3de8CRbp0BTlZWOajuNbquk8y4BJoOu3GURtGNgJjCbSaF7/c6RXqejucpW0YU0nSswHkkxFk4zFtFm+U3GtF2gkVCqYjwBaEGJy2rQ6tVsRjy20v+tRhxmI3aLHrvJsGBNPlRVJZ0vlptrzP1/dOb/qTzhZJY32kizmfTUOMxUO0xUOy1a4OUw43WYzhtAHo+G571mCcRWuQaPBZ2iXaForrJhN+lJZAsMBJLl4GskJIHYQusPJEiVinOT2QKHBrQOSHN3wzw2I41yxXfJ0OsUbuuq5hcn/OQLKrUuC2/b3si/vTrKk6cmaffZ6Sg1HBgIJKmyRyUd7hrp9kd5dTBc/jiVLfDPLw8wGEii1yk8clPljDCbSc/d62skhW0JUhSFNTUO2rw2eiZinBqLlmuY2n12/ttdazg1FuXJUxNMxDI81T3Ji2enua2rmlu7qivS5sLJHPvPBXh1MERHjZ2uWseKbT5VLKpMxNIMBbRdwYs1HAinshwZDHF4MEwwOdvIpsZpZldbFTtaPBfteuhzmOisttN6kUHCYunQ6xRqnZZyxoyqqoSSuYp0xnTu/AjdYtSXd81m5ItFAvFsqR4qXaqPyjIVS5MtqKUdtDyDwYuvx6RXsJkNOEwGzEYdRr0Ok0GHaeb/Bh36UjqiArO1hwqgak1lckUtDTFfVMkXi2RL9WCpXIF0VqsBS+cKXG6iok4pNTyxG7W2/TYjVaU2/jUO84LVNkogtsqZDXpqXWb8kQw6RWFdvZMjQ2F6/NFy8OWPpMgViquibelSoKoqp8ej5Y8PDgTJFlQa3Ba66mb/OG5scK3K1r9LmdNi5JYOHy+c1er5drZ56ZtOcGQozPcODvPxe7vKJ4JHh8NU2UySPnUVVFXl6HCY0+OzKTTRdI5vv9DPRCyD2aDjA3vaKk4q3FYjd6+vwS41LEuaQa9jc6ObNTUOTo5F6Z3QGkYoKGxudLOpwcWJsShPnZ5gshSQvXB2mpvaq7i1qxrPnPlJmXyR7vEY3eMxap1m1tQ6aPJYMRmW92taNl9kPKLtUoyFUxcNvjL5AqfHoxwZCtM7OZtpYTbo2NbsYVebh2av7YI1QFaTjnafnc4ah9S2LmOKos0K89pNrC81Z4umcwTiWlpeKKGl5V2o3sqgmzsLbfaC1kzjinAySyiVI5zIEU5lCSdzhFM5Epk8yUyeggrZgko2mSOcvHBt4rVmNuhwWQylIduG0pvW6dFpNeK1m3CZDeiuMK1yLrtZX+oeaaTonn+dmrwSCVqqbPgjWovSDfUujgyF6fbHeHir9vlCEcbDaamjWCAjoVS5I1K+CPv7ZnbDqssvlHaznjav/HssRa0+G+tiDs6UUkvfvqORsVCKiViGxw4M8dt3dGAopf2+cHaah7bUS2H7PBSLKi/3BxiYTpZvm46n+dYLA4RTOZxmAx+6rb2cqgPaVf8710l7+uXEYtSzs01Lkzs2Ei7/eyuKwtYmN1saXRwfjfBM9yQTsQwvnA3w0rkA25o93L62ujwXc8bMnCW9DhrcVtp8Npo81mVTsxlJ5fBH0oyFU0xE0+cNAp5RKBbpnYyXLlREK4K0zmo7O9ur2NLovuAF1pnUw84aBw0ui6QerlAuixZEzDQAUVWVWCavBWWlt0gqd8GdM9AuimiBjpGWi3wNFZV0brZdfCKdJ1soks2rZAuFUq2YSq5QoKBqzTlmZv6qqoqKli4709TDMPN/ndbsw2oqdWcs/X9ud8ZrwWLU4bQYcZi1YM41J7Cb+zcjELjwz+hyyKu/oKnKyisDWjH72loHOgWm41kC8Qy+0sDMkVBSArEFcnJsdjdsIKaQzBbw2IxsnVMPtrHBJS+OS9gNrVVMl640mvR63ndLG1995ixDwST/eWyct+9oArQr2s+fmZLmHVcoVyjyQu90RQvl0VCK77zUTyJbwGc38Zu3dVA1p3lAi9fKrWuqV1Wt0EriMBu4dU01mxtynBiLlGubFUXRBgk3uzkzEWPfmWn6phMcHQ5zdDhMq9fKzR0+tjZVBh2FIuWaF4NOocZlptFtpd5tWVI7P4lS23J/NI0/kr7gPKkZRVVlIJDg+IjWnnzufX12E9tbPJec+VVlM9JZ46DNZ5MGXauQoijl4KzNNztmJZ0rEC3VVkVSOaKpHNF0jmS2cMHmLxXPiVIOkKpZegPYdQpayqRZj81kKAdcM8HXQuyaSyAmsJkM+BwmAvEsFqOe9mo7fVMJTo1HuaNUkzQaTlEsqnLyf51NRNPljmHFYpHuiPbzvqOruryFbjbo6JRZVEuaXqdwx9pqnjjhJ5Mv4nOYec9NLfzT/kEO9AdLraC1xhHhZI79fVrTAUk1fWPpXIFne6bKvycA56bi/Mv+AbIFlUaPhQ/d2o7DPHsyva7Owc62Kvn5rgBum5HbuqrZ0vi6gAyF9XUu1te5GAkl2dc7zYmxCEPBFEPBEX7+2hg3tFaxq72KerelIg0vX1QZD6cZD2uBvd2sp7ZUnO+1m/DYTAsSwKdzBaKpHIFEttQuO1NuWHIx+WKRs5NxTo1FOT0eJTEn+HKY9Wxt8rCj1UNzlfWCqYczXQ87qx0VFy6EmGEp7TLVOitvLxZVkjltIHIsnS8NRs5rs7tyRVKl+V2LQVG0Y3tmjpnFoMds1GuzzkwGbGbt/xajbtFfFyQQE4A2IyQQ105sNje46JtKcHJsNhDLFbRC4IbXpXmIa+vkWKT8/qnxGIm8gs2kZ9ecbm/r652ye7IM2M0G7lhbzdPdkxRVWF/v4r4NtTzVPclPjo5R77KWO2AOB1McGQ6Xx0aIC7vQoOYToxF+8MowBVWls9rO+25pq7iav63ZzRbpLrrilAOyphynx6MMTCfKaXrNVTbee3MrsXSOQ4NBXukPEU5pFzz29wWocZrZ1uRmW4ubGsf5NZqJTIH+TKI810yngMdmqqg5cVgM2Ex6THrdZf89VlWVTF5L05qZuRTP5ImmtNqaNwq6ZteX04Kv8Rg9/ijZOWmHVqOeDQ1Otjd76KqxX7AGRqdAvdvCmhoHjR6r7BKLedHplPJ8s7qL9J0qFtXyMOVcQWuwkSsUyRdVsnnt//lCEbV036KqpTOqpTRFbbYY6BUFnU5BV5o1ZtBpM8jKs8hK75v0WvBlNix+gHW5JBATgPbC9dqwFgRsanTxs2PjDAWTxNK5cgelkVBKArHrKBDPlGv1VFSeLzV8uKXDW06pMegV1tZJB8vlotZl4YbWKg6X5ljdu6GW0XCKbn+M7x4Y5PfuWVPeuekej+E0G1hb57zUU65aoUSWZ+cMagY40B/gP46OAdpg83fvain/rigK3NzhlY6vK5zbauSWTh/bmz30TMTonYiV66GcFiP3rK/jrnW1nJ2McbA/SI8/zlSpucdT3ZPazLF6J2vrnLRUWS8YuBRVyjUzF2LQKeXOb1rHt5nPKBSKqnYCWijOe/BsrlBkOJikdzJO72SMsXC64vNOi4HNjS42N7pp99kuOtepxmmm3afNnpLUQ7EQdLpSHZdJjreLkUBMANqLmctqIJrK47aaaK6yMhJKcXI8yi0dPgCGg0l2SXrPdTO381vfVILxSAa9orK7Y3aXpKvWIY0Glpn19U6CiSz90wkUReHdu1r46rNnCcSz/MvLg/z27Z3l4OHQYAib2UCTRy54zDUaTvHi2enyiayKyjPdkzx5ehLQAq63bW9EV/rbZNAp3La2Wn6Oq4jVpA0f3tyoZXT0TsbKTY90isK6Ohfr6lykcwVOjUc5NhLm7GS8PHPs6Z4pzAYdXTUO1tQ5aK2yUecyX9aw2nxRJV/a4boWYukcQ8Ekg4EEg8EkY6HUeTOP6t0W1tU62dzopLnKdtHXZY/NSJvPRrvPLp1ChViC5LdSlDVX2TiV0hpFbGl0MxJKcWp0NhBL54pMxTIyAPU6iJZeeGc8d2YKgE6nWp5loVNgY73MnVqObu7wEknlCCa0OswP7Gnj68/2MRxM8aPDIzxyUwuKoqCq8GLvNPdvqrtoQf1qc2YixuHBULkoXFVVfn5srNxN9N71Ndy3qa5c/2Iy6Lh7fQ3VjqVXGC6uP6Nex/p6J+vrnUzG0pybTDAUTJSHGluMem5sreLG1iqS2TynxqP0TsQ5OxUnlS1wcjzKydL4EINOodFjobnKRr3Lgs9hwucw47QYLlhvdSVUVSWWzhNKafOZJkrNOCaiaeKZ8wM6h9nA2loHXXUOumocF531BdqF1eYqrSOkzMoTYmmTQEyUtVRZOVXq2Le50cUTJ/2cm46TzObLwcBgMCmB2HVwek6nxLFwirOTcRQF1s2ZTdFRbZft/WVKr1O4c53WvCOdK1LjsPDoLa18+4V+jo9G8NpNvGlzPaBdXX/uzCT3b6y75MnWSqeqKq8Ohejxz849yhWK/OjwCMdHtTTqt2xr4NY11eXP28167l5fu6S63onFMzPQ9sY2D4OBJIOBJFOxTPnzNpOBXW1edrV5Kaoqo+EUvRMxBgJJRoJJ0vliqdlHquJ5jXoFr82EvVQnZjMZsBr1mI06lDkhmqJonVEzM80LcgVS2QLhVI5IMnveLtdc9S4zrT47bV4bbT47VXbjJYO/GqeZ5iqt7nSlDq0WYiWSQEyU+Rxm7GY9iUwBn8NMvcuMP5rh9Hi03OFN0hOvvWQ2Xy4KB3i+V9sN29roxmGcHVW/sVF2w5Yzm8nAXetqeOr0JPmiSme1g1/f2cwPD43w3JkpvHYTN5WasqSyRZ7unuSBTXXliyCrSa5Q5MWz0xW1MMlsnn95eZDBQBK9Av9lZzPbW2bTdj02I/esr5WLFeI8ZoOedXVO1tU5SWbzpbS/ZLlBFWjpiy1VNlqqtDEtqqoSSGQYCaUYDqaYimcIxrOEktlS86oMzAnq5kNRwG3RhsvWuy3UuyzUu7XBuW80B8lk0FHnMtPgttJcZZWaLyGWqdX3Ci8uqdVrK9cqbW50449OcnJsNhBL54pMxjKlCeviWuj2x8rdvkKJLMdHtKv9t3f5CAxrgVir1yZXOVcAn8PMrV0+9vVOo6pwQ0sVwXi21ElxFI/VWG7WkcgUeLpb2xlbTSdZyWye53qmCCVz5dsCiQzfeWmAQDyL2aDjfbe0VTThqHWauXNdzYLMfBHLm81kYEO9iw31LhKZPOMRLSXQH02TndNqW1EUqh0Wqh0WdswJ+PPFIuGklmacyuZJlGrDtFbdBcqbXCqoaKmSFqOuNGhW+7/basJjN+IyGy7YHORCDDoFn8NEnctCg9uC126SC6JCrAASiIkKFYFYk4unuifpnYyTyRfKTSKGgkkJxK6RTL7A2cnZ1Kt9Z6dQ0QZrN7gtBIa12zfJbtiK0VxlY2dbFYdKQ9Tv3VhLIJHl6HCY7x4Y5Lfv6KS5dFU+mtLatd+zoXZVBGNTsQwvnJ2q6Iw4FEzwz/sHtcHmViMfvLW94u+PDGoW82U3G+iqddBV6yjtgGWZiKYJlIaxX6j5hkGno9phvu41iA6LgWq7iWqn9rU8VqPM8RRiBZJATFSYm55Y57Lgs5sIJLL0+GNsa/YAMBRIsrO1Sl4UroHeiXi5E1wik+NQqc35netqyvepd5ulccMKs67OSTyTp3s8hoLCr9/YRDSdo28qwbdfGuCjd3SWg41QMsfT3ZPcu8KDsd5SU47inLqZk2PajLB8URvU/ME97RV1c+vrndzY6pGdAXHVtB2wygArmc0TiGcJJ3PE0jlimTzxdP6aDak16JTyYFmX1YjbasRj0/7/RqmJQoiVQQIxcZ42n51TY1EUFDY3unm+d4rjI5FyIJbJF5mKS3ri1coXivT4Z1vW7+8Lki+oNHmsdNbYKZbafG2sl7lSK9ENLR6SmQJDwSQGnY7339LGP77Qz0goxbde6Oejd3Xis2snheFkjidPT3DfhroVVwNVKKq8MhCkb2q2TlJF5cWz0zx+3A9oAdcjN7WUd+UVBXa1VcnMNXFd2UwGbF4DLd7K2zP5mVTEIplckWxBa8ZRKM6MV9BqzFS0YMug02EyzAyg1dITbWa9jCIRQkggJs7X6rWVuydua9ECse6JGOlcoXxFfjAg6YlX69xUonxlNVsosL8vAMBd62rK3bEcRuTnvEIpisKeNT4y+QIT0Qxmg54P3drOP+zrwx/N8I/7+vnIHZ1UlXZDo6k8e09PcM/6mhXTTTGRybOvd7piUG6uUOQnR0c5MhQGYHeHl7duayjX0hj0Crd3VdMoM8LEIjEbJIgSQlwbsvctzuO1m3BYtBi9wW2h2mGiUFQ57Z9tsT4cTFIsXqL3rrikYlGle87P89BAiFS2gM9uqqgHa7LJz3gl09ra11Dt0IItm8nAh2/rwGc3EU7l+Oa+cwTis53Z4uk8vzo5wXT86rq1LQVDgSSPHx+vCMKiqRx//3wfR4bCKAr82tYG3rajsRyE2c16HtxUJ0GYEEKIFUECMXFBrV6tWYCCwrYmN0C5mx9o6Ynj0fQFHyve2EAgQaI0tLNQLPJC7zQAt6+tRleqd3FZDHhlJu2KZ9TruHt9LVU2bZfLaTHykTs7qXaYiKTyfHNfH1Px2d+1TL7I06cnGZ4zAHw5yReKvNwX4IWz0+TmDFIaDCb4yjNnGQmnsJr0/OZtHdzWVV3eHfbajTy4qV4G1AohhFgxJBATF9RWCsQAtpZqw3onYqTmdJEamDP7Slw+VVU5NT67G3ZsNEI4lcNh1nNj62yb5I0NTqQHwepgMui4Z0MtnlIw5rIY+cgdndQ6zcTSef7++X7GwrNDZfNFlX2905wYjaCqy2fXNJjI8osT/vPqwV7um+Yfnu8jnslT7zLzsbu7KtrTt3it3L9x5dXHCSGEWN0kEBMXVGU34bJq6Yl1Lgu1TjMFFU6Oz+6KjYZS5ArXpnvUajISShFN5QHtJHTfGW2A861rqsudsuxmfUUwLFY+i1HPvRtq8drn7Izd0UGD20I8k+ebz5/jzESs4jHHRiI83ztdMf9oKSoUVV4bDvOrk35i6Xz59lS2wHdfHuSnr41TUGFLk4vfuWtNRZfQ7S1u7lhbg0G6yAkhhFhh5JVNXFS7z15+f3uzlp54bE56Yr6oLtv0qMU0dzfszEQMfzSDSa+wu8NXvn1DvUvGA6xCFqOeezbU4ivVjNnN2s7Ymho72YLKP+0f4NBgsOIxo6EUT5z0MxlbmqnCk7E0vzgxzsmxaEVr+sFggi8/3cup8Rj6Uj3Ye29uLTdBMBl03L2+hs2N7kVauRBCCHF9SSAmLqrNd3564rmpOIlMrnz7YEACsSsxMyx0xvM92m7YzR3ectqV2aBjTY39go8XK5/ZoOee9bXUOrUCQYtRzwdvbWdHsxtVhX9/dZT/PD5GoTi7CxZP53ny1CRHhkLlFtqLLZnN89LZaZ48NVneAQYoqirP9kzyzef7CKdy+Owm/ttdXRX1YB6bkTdtlqYcQgghVjYJxMRFOS3Gcje3aoeZBrcFVYUTY7M7Ov5ouqJuTFzaqbG5nScT9AeS6BS4rau6fPv6eqekYa1yMzVjMxdDDDodv3FTC3ev1wZ9v3g2wD++0E8snat43OnxGL84Mc54JHXecy6UbL7IidEIP39tnIHXXaiZjKb5+nPn+NWpCVQVdjS7+fi9XTRVzQZcHdV2HtxUt2Ja9AshhBAXI2d74pI6quemJ3oAODocLt+mqlqKkXhjwUSW8chs+tjzZ7ROidtbPLitWsBr0CmsrXNc8PFiddHrFG5d4yuPM1BQeHBTPY/ubsVs0DEQSPKVZ85ybipe8bhoKs8z3VM82zNJJJW70FNfF7lCkZNjEX762hjHRiLk5+zMFYpFnu2Z5MtPn2UklMJs0PGuG5v4jTlDmo16hdu6fOxZ45MLEUIIIVYFGegsLqnFa+PwYIiiqhXNP3HSz2AgSSiRLQ+aHZhOsKHe9QbPJObuhk3H05ws1YrdubamfHtXnUMGhYoyRVHY0eLBYdZzaED7Pdzc6KbGaea7B4aYimX4xxf62dPp5aEtDeVmLwBj4TRj4XFavTY2NboqGmBcS7F0jt7JOOcm4xXt6Gecm4rz09fGmIpps8/W1zl4xw1N5YsPANUOE7d2VeMwy0uSEEKI1UNe9cQlWYx6GjxWRkMp3FYTa2rsnJtKcGQ4xL0b6gAIJnJEUjncVkkluphoOsdwaDZNa19pbtiGeid1LgsAOkX7WIjX66p14rGZeKF3mmS2QK3TwsfuWcMvjvs50B9kf1+QM5Nx3rGjqaLtO8BQMMlQMEmN00xHtZ1Wrw2T4ep2nDL5AsPBFEPBBP7IhYdLBxIZfnVyguOjWoMfm0nPw1sbuKHVU64FUxTY3OhiS6NbmtMIIYRYdSQQE2+ow2dnNKTVnNzQWsW5qQRHh8Pcs6G2fEI1MJ1ge4tnEVe5tJ0eizIz7imWzvHqYBiAO9fN7oZ1VNuxmeRXUlxYtcPMQ1vqefHsNBPRDCa9nrfvaGJTg4t/e3WEQDzLP77Qz6YGJ2/e2oDPXjkNfCqWYSqW4fBgkFqnhVqXmTqX5bIuoKSyBcKpLFOxDBPRDIF4hov1BImksjzdPcXhwSBFFRTglk7feXPAqmxGdnf6rttOnRBCCLHUyVmfeEONHgsGvUK+oLK50cVPjipMx7OMhFK0VGnNBAYCEohdTCpboH/O8OuXzgUoqCqtXmtFZ8oNDZLeKS5tZtbY6fEYx0bCFFVYW+fkk/ev46nTE+zvC3BqPEaPP86u9iruXFtTTiGeUSjCeCRdqlfUdqtMOpXuoILtzBQWkxFV1Wq+coUisXT+gimHrzcRTfPSuWleHQqXOzeurXXw0JZ6GtyzzTj0OtjS5GajjGgQQgixykkgJt6QQa+jpcpG/3QCs0HPpgYXx0YiHB0KlQOxRKbAZCxNrdOyyKtdek77Z+cnpXMFXu4LAFpt2MyOYqvXJqmd4rIoisKmRhdNHiv7+6YJJnJYjXresq2Rm9u9/Pz4OGcn4xzoD3JwIMj2Jje71/ho9drKx9vrpXJFYjnwRzLo9fkL3udCcoUi3f4YrwwEOTs52zSk3Wfjwc31FbMIAVq8Vm5orZJaMCGEEAIJxMRl6qi2l3d1bmj1cGwkwmsjER7e2oBep9Wb9E8lJBB7nXSuwNmJ2RPUg/1BMvkiNQ4TG+fsgM10xhPicrltRh7cVE+3P8aJsQj5gkqty8KHb2unfyrBc2em6J2Mc3QkwtGRCF67iR0tHjY1uGhwW1CU+e1GJbN5+qcTnBqPcmosSiavzTNTgE0NLm7rqqatujLo89iM3NhaRb1b/j4IIYQQMyQQE5elzmXGatKRyhZZW+PAYTYQz+TpnYyXOyYOBpPsbKuS1tNz9Phj5Tbe+WKRF89pTTruWFtTPhFucFukTkbMi06n7Y51VNt5bSRM31QCBYXOGgedNQ7GwilePDfNydEIwUSWp7snebp7EqtJT4fPRnOVDZ/DTJXVQCqvNeGw6HQUVZV0rkA6VyCSyjMRTTMVyzAcSjIWTleswWM1sr3Fw83t3vPSIF1WA1ub3Npu3DwDPyGEEGKlkkBMXBZFUWjz2ekej6HT6djW7OalcwGODIXLgVi+oDIcSlXMHlvNMvkCPROx8seHB0PE0nmcFgM7Wj3l22U3TFwtq0nPLZ0+1tU5OTUWZSiodehs9Fj5jZ0tvH1HI6fGorw2EqF/Kk4qW+DUeIxT47E5z6Lnp0M9l/X1ap1m1tQ42NZ84SDLazeyod5Fm08CMCGEEOJiJBATl62zWgvEAG5sreKlcwFOjUdJ5wpYjFo3tL6puARiJWf8cfKlJgeFYpHnzkwBWm2YoZTO6XOYyu3rhbhaXruJ29dWE03nOD0WZSCQoFAEk17PjpYqdrRUUSgWGQ2n6J9OMhlLE4hnmI5nSWbz8LoaMrNBh8NioNZpptZpod5lprPGgdNyfj2jToHmKhvr6h2SoiyEEEJcBgnExGXz2Ex47UaCiRwNHgu1TjOTsQwnRiPsavcCMBHNEM/kV30xfjZfpNs/O8D5tZEI4WQOu0nPzR3e8u1bmtyLsTyxwrksWmv4G1qrGAomGZhOMFkaqKzX6Wj12mn1zl4wKRQKHD9+nA2bNlNAQYeC2ahD9wa7WYqipS23eu00V1nLF2SEEEII8cZW99myuGKdNQ6CiRAKCjtaPPzq1ARHhkPlQAy0ph1bm1d3gHFmIlZu+V1UVZ7tmQTgtrXVGEs1dF67kSaP9aLPIcTVMhl0dNU66Kp1kMzm8UfSTEQzTMbSJDKFivsqChj1Oiz6SwdTbquROpe5PItMgi8hhBBifiQQE1ekzWfj1cEQRRV2tGqBWP90klAiWy7U75uOs6XJtWprQ2Zaes84MRZhOp7FYtBxS4evfPvmxtUdrIqFZTMZyk08QOvoGU3niKXzhONpps+pdFTbQNECK6NewWjQYdLrcFoMuCxGnBaDNOMRQgghrhEJxMQVMRv0NFfZGAom8VhNdNbY6ZtKcHgoxP0b6wBtpthENLNqW1WfmYiRLbX0VlF5tlvbDbu1q7q8e+CxGWmukt0wsXgsRj0Wo55aJ+Q8ZkZcsLvDi9Eo8+yEEEKIhSCXNsUVW1M7W1tyU1sVQGmXTC3ffm4qft7jVoN8oVhuaALQPR7DH81g0ivcumZ2N2xLo3vV7hgKIYQQQggJxMQ81Lss2Ezazs6mRjdWo55wKsfZydngaziYJJ0rXOwpVqwzE/HygFsVlWdKtWG7O33YTNoGtNtqpMUru2FCCCGEEKuZBGLiiimKUm5Rb9Tr2NHiAbQ5WTOKKvRNJRZjeYsmmy9yany2U+LZyTgjoRQGncLtXdXl2zc3rt76OSGEEEIIoZFATMxLZ81seuKudi098dRYhEQ2X7797FQcdU664krX46+sDXv6tLYbdlO7tzx3yWkx0OazLdoahRBCCCHE0iCBmJgXp8VIQ6kZR4PbSpPHSkGFI0Ozu2LxdB5/NL1YS1xQ6VyB03PmhvVOxBkMJtHrFO5aV1O+XXbDhBBCCCEESCAmrkJXraP8/syu2KGBECqzu2C9E6ujacfp8Sj50twwFZUnT00AWhc6l3V2N6zdZ7/ocwghhBBCiNVDAjExb00eK1aTdghtb/Zg0CtMxjIMBZPl+4yGUyTnpCuuRKlsoSLg7B6PMRJOYdRX7oZta3aj08lumBBCCCGEkEBMXAWdTmFNaTisxahnW5M2oPjAuUD5PqoK5yZXdtOOk2MR8sXSbpiq8uRpbTdsT2d1uTasymak1Su1YUIIIYQQQiOBmLgqa2oczJQ87enUOgMeH40SS+fK9zk7FaNQXJlNO+KZfEXb/pNjUcYjacwGHXeum+2UuK3FI7VhQgghhBCiTAIxcVXsZgONHm0mVlOVlRavlYKqcmgwWL5PKltkMLAyd8WOj0SYiTGLc3bDblszOzfM5zDR5JG5YUIIIYQQYpYEYuKqzW3acUunD4CD/UGKxWL59m5/bMHXdb2Fk1kG5gSYx0fCTMYyWAw6bls7Wxs2M2dNCCGEEEKIGRKIiavW6LbgsGi7P1ub3NhNeiKpPKfnBF/hZI7xSGqxlnhdHBkOMzMmrVgsHipWTgAAGqVJREFU8lS3NjfsjrXVWI16AOpcZupclsVaohBCCCGEWKKWbSAWDAZ59NFHcblceDwefuu3fot4/NKt0n/nd36HNWvWYLVaqamp4e1vfzvd3d0LtOKVS1EUNtY7ATDodNzU4QVg/5ymHbCydsXGIynGw7Mz0l4dCjMdz2Iz6bm1a7Y2bLvshgkhhBBCiAtYtoHYo48+ysmTJ9m7dy8///nPef755/noRz96ycfs3LmTb3/725w+fZpf/vKXqKrKgw8+SKFQWKBVr1wd1XZMBu1wurnDiwL0TSeYmDPQeTycJpLMXeQZlg9VVTkyFC5/nC0U2FuqDbt7fQ1mg7Yb1lRlpdphXowlCiGEEEKIJc6w2AuYj9OnT/PEE0/wyiuvsGvXLgC+/OUv8/DDD/PFL36RxsbGCz5ubqDW3t7OX/zFX7B9+3YGBgZYs2bNBR+TyWTIZDLlj6PRKAC5XI5cbvkHFddSh9fCqfEYTpOejQ1OTo3HeP7MJL9+Q1P5PsdHguwu7ZgtV+emEgRiswHmvjNTxNJ5PFYDN7V5KBQKKApsqrNf1TEy81g5zsT1JseaWChyrImFIseaWChXc4wty0Bs//79eDyechAGcP/996PT6Thw4ADvfOc73/A5EokE3/72t+no6KClpeWi9/vCF77A5z73ufNuf+aZZ7DZZC7UXNkCnJxWUIFGBU6h5+hwmCYliL10pJ0ARo+rWJblkQf5IhwJKORKfUjSBXhuSAcobHBm6T51EoA6q8pLk9fma+7du/faPJEQb0CONbFQ5FgTC0WONXG9JZPJeT92WZ4O+/1+amtrK24zGAx4vV78fv8lH/u1r32NP/7jPyaRSLB+/Xr27t2LyWS66P0/85nP8KlPfar8cTQapaWlhXvuuQefz3d138gK1NAfpH9aOyD7XhqgbzpJwFDD7i315fs0VduW7a7YkeEwSf9sLeLPjo2TV0M0eSw8vLsDRVEw6BXesrUeS6lhx3zlcjn27t3LAw88gNFovNqlC3FRcqyJhSLHmlgocqyJhRIIBN74ThexpAKxT3/60/zVX/3VJe9z+vTpq/oajz76KA888ADj4+N88Ytf5N3vfjcvvvgiFsuFO9uZzWbM5vPrfIxGo/xiX8CW5iqGQloq513ra+mbHuDQYIj7NtaV52oNhzNsL4DTsrx+fuFklnPTKfR6LcCaiqd5ZTAEwJu3NGAwlDpHNrtx2q5dp0Q51sRCkWNNLBQ51sRCkWNNXG9Xc3wtqUDsD//wD/nQhz50yft0dnZSX1/P5GRl3lc+nycYDFJfX3+RR2rcbjdut5u1a9dyyy23UFVVxY9//GPe+973Xu3yBeCxmWj0WBgLp+mqdZTf338uwH0b6wBQVTgxGmXPmuW1o3hoIFRuV6+i8p/HxlFVWF/vpLNGm6VmM+nZUOogKYQQQgghxMUsqUCspqaGmpqaN7zfnj17CIfDHD58mJ07dwLw9NNPUywW2b1792V/PVVVUVW1ohmHuHpbm9yMhdMoKNy1rpbvHRzipb4Ad6yrxlTaTRoIJNjc5MK1THbFBqYTTMZmj5Pu8RhnJuLoFfi1rbPB//YWDwb9sm1GKoQQQgghFsiyPGPcuHEjDz30EB/5yEc4ePAgL774Ih//+Md55JFHyh0TR0dH2bBhAwcPHgSgr6+PL3zhCxw+fJihoSFeeuklfuM3fgOr1crDDz+8mN/OiuNzmGn0aKl5mxtd+OwmUtkCB/qC5fuoKpwYiSzWEq9INl/kyHCo/HGuUOQ/j40DcGtXNdUO7XutcZrpqLYvyhqFEEIIIcTysiwDMYDvfve7bNiwgfvuu4+HH36Y22+/nW9+85vlz+dyOXp6esqdTCwWC/v27ePhhx+mq6uL97znPTidTl566aXzGn+Iq7et2QOATlG4e722y/nsmSnSudmZbQOBJNPxpb8beWQoRCpbLH/8wtkpgsksTrOBezdox46iwK62qsVaohBCCCGEWGaWVGrilfB6vTz22GMX/Xx7ezvqTEEP0NjYyOOPP74QSxOA126iqcrKaCjFDa1V7OudZjKW4fneKR7cNJvKd3gwxIOb6lAUZRFXe3HjkRTnphLlj8OpLM/0TAHw5q315eHN6+ocVNkv3n1TCCGEEEKIuZbtjphY+rY2uQFtV+yBTVqjjhfPThNLzw6+C8SzDATmP3/hesoVihzsn5NOicpPj46RL6i0+Wxsb/EAYDHq2NrkWZxFCiGEEEKIZUkCMXHdeO0mWrxWADY1umjxWskVVJ7urux4eXQ4RK5QvNBTLKrXhsMkMrOplMdHI3T7Y+gVeMeOJhS0XbwdLR5MBvlVEkIIIYQQl0/OHsV1taPFg04BBYU3bdZSEl8ZCBKYUxuWyhY5ORZdrCVe0HgkxZmJ2cHNyWyen782Bmjz0epcWoOOere53LpeCCGEEEKIyyWBmLiunBYjGxpcAHRWO1hb66CowuMnxivu1z0eJZjILsYSz5POFdh/rnJK+n8eHyeeKVDjNJebjxh0Cjd3LK9ZaEIIIYQQYmmQQExcd5sbXVhN2qH28NYGdAqcHo9xenx2F6yowst9AYpF9WJPsyBUVWX/uQDp3GyqZO9EjCNDYQB+/cYmDDrte9nR6sFhXrb9boQQQgghxCKSQExcd0a9ju2ldvZ1Lgu3d2k7Sj97bYxsYbYGK5zMcWJscWeLdftjjEfS5Y+T2Tw/enUEgD2dXtq82pywGqeZtbWSkiiEEEIIIeZHAjGxIDqq7XhL7d3v3ViDx2oknMrx9OmpivudHFu8FMXJWJrXhsPlj1VU/v3VEWLpPNUOE2/aotW46XWwu9O7ZFvuCyGEEEKIpU8CMbEgFEXh5g4vigImvZ63bm8EtOHIE9HZHShVhZfOTZPNL2wXxXgmz74z08zNjDw0EOLUuNYl8ZGbWjHptZlhN7ZW4bIYF3R9QgghhBBiZZFATCwYr93E5katccfGBhebGpwUVfjR4RHyxdnAK5rKc6A/cLGnueZyhSLPn5kiMyf4m4qn+fkxrUviA5vqafRobfhbvFbW1jkXbG1CCCGEEGJlkkBMLKjNjW48Nm036a3bG7Ea9YyGUzx1unK22HAwxakFaGk/05wjnJwdMp3JF/jegSFyBZXOGjt3rK0GwG7Wc3OH97qvSQghhBBCrHwSiIkFpdcp3NLpQ1HAbTXx6zc2AfDcmSnOTcUr7vvaSBj/nMYZ15qqqrzcF2QklJq9DZUfHR7BH83gMBt4984WFEVBUWDPGh9mg/66rUcIIYQQQqweEoiJBTc3RXFzo5ub2qsA+NdDwySz+fL9VBX29U4RTl775h2qqnKwP0j/dKLi9me7Jzk5FkWvwKO3tOKyart325rd1Dot13wdQgghhBBidZJATCyKLY1uapxmAH5tWwPVDhOxdJ4fHh6hqM52zMgVVJ7pmSSSyl3sqa6YqqocGgxxbqoyCDs9HmVvKUXybTuayq3q2302Nje6r9nXF0IIIYQQQgIxsSh0OoXbu6qxmnSY9HoeuakVvU6hxx9j76mJivumskWe7p4gkrz6YCxfKPLC2Wl6JyrTIPun43zvlSEAdnd4ualdqwXz2k1SFyaEEEIIIa45CcTEorGa9NzWVY1OgUaPlXfNqRc7PBisuG8qW+RXp/xXVTMWS+fYe2qC4WCq4vbhUJJ/3j9IvqCyvs7BW7Y1lNan4651NRj08msihBBCCCGuLTnDFIuq1mnhhlatRmxHSxV3rasB4N+PjNLtr+yaOJOmeHwkQnHuwK83UCyq9Phj/OK4n9DrdtXGIym+8+IAmXyRzmo7/3V3G3qdDqNe4a51tVhN0pxDCCGEEEJcexKIiUW3vt5JV60DgAc31XFDqwdVhe8eGOLMRGUwpqpwfDTCL074GQ4mUdWLB2TFokr/dILHT4xzeDBE/nXB21AwwT++0E8qV6DVa+X9e9ow6nUY9Ar3bKjFazdd+29WCCGEEEIIwLDYCxACYFdbFelcgZFQil+/oYlMrsCp8Rj/sn+I99zUwpamymYZkVSOfb3T2M16mqusVNlMWIx6iqpKIlMgEM8wGk6RK1w4UDsxGuFfDw+TL6g0e6x88NYOzAY9Bp3C3etrqHaYF+LbFkIIIYQQq5QEYmJJ0OkUbuuq5vneKcbDad57cyvfPzjMyfEojx0c4k2b67lzXTUKSsXjEpkCPf74RZ71fPlikb2nJtjXOw3AujoH7725tRyE3bW+RtrUCyGEEEKI605SE8WSodcp3Lm2hkaPBb1Ox3tvbuGWTq1j4S9P+vnn/YPE0vPvnDgcSvK1Z86Wg7A71lbzgVvaMBv0WE067t9UR51LgjAhhBBCCHH9yY6YWFJmgrFDgyHOTsZ56/ZG6lwWfn5snB5/jP+79wz3bazl5g4vJv3lNdKYiKZ5tmeS10YiANhNet5xQ1N5NpjXbuSOtTXYzfLrIIQQQgghFoaceYolR6dTuLnDi9tq5MhQiN0dPlq9Nv791VFGwykeP+7n2Z4pdrR42NzoornKhnFOi3lVVZmKZ+ibinNsJMJAIFn+3A2tHt68pR6H2QjA2joHN7ZWodcp561DCCGEEEKI60UCMbFkra93Uu0wsb8vAFj53bvXcHgwxLM9k4SSOV46F+ClcwEUBZxmAxajnnxBJZLOUXhdh8TNjS7uXldLU5UVALtZz+4OH/VuSUUUQgghhBALTwIxsaT5HGbevKWB0+NRTo1Huandy85WDz0TcY6NhDk3lSCeyRNNa28z9DqFNq+NdXVOtrW48Vi1VvRGvcLmRjfr652yCyaEEEIIIRaNBGJiydPrFLY0uVlb5+CMP87ZqRgbG1xsbHChohJP54mkcmTyRQw6BZfFiNtqQKebTVd0W4101TrorLFXpDEKIYQQQgixGCQQE8uG2aBna7ObLU0uJmMZxiNppmMZLIYcTouxfD+dAjazAY/VSI3TTKPbittmvMQzCyGEEEIIsbAkEBPLjqIo1LksFa3mi0WVfFFFUcCgU1AUSTsUQgghhBBLlwRiYkXQ6RRMUvMlhBBCCCGWCSmWEUIIIYQQQogFJoGYEEIIIYQQQiwwCcSEEEIIIYQQYoFJICaEEEIIIYQQC0wCMSGEEEIIIYRYYBKICSGEEEIIIcQCk0BMCCGEEEIIIRaYBGJCCCGEEEIIscAkEBNCCCGEEEKIBSaBmBBCCCGEEEIsMAnEhBBCCCGEEGKBSSAmhBBCCCGEEAvMsNgLWG5UVQUgFothNBoXeTViJcvlciSTSaLRqBxr4rqSY00sFDnWxEKRY00slFgsBszGCFdCArErFAgEAOjo6FjklQghhBBCCCGWgkAggNvtvqLHSCB2hbxeLwBDQ0NX/MMW4kpEo1FaWloYHh7G5XIt9nLECibHmlgocqyJhSLHmlgokUiE1tbWcoxwJSQQu0I6nVZW53a75RdbLAiXyyXHmlgQcqyJhSLHmlgocqyJhTITI1zRY67DOoQQQgghhBBCXIIEYkIIIYQQQgixwCQQu0Jms5k/+7M/w2w2L/ZSxAonx5pYKHKsiYUix5pYKHKsiYVyNceaos6n16IQQgghhBBCiHmTHTEhhBBCCCGEWGASiAkhhBBCCCHEApNATAghhBBCCCEWmARiQgghhBBCCLHAJBC7Al/96ldpb2/HYrGwe/duDh48uNhLEivQ888/z1vf+lYaGxtRFIWf/OQni70ksUJ94Qtf4KabbsLpdFJbW8s73vEOenp6FntZYgX6u7/7O7Zt21Yerrtnzx5+8YtfLPayxAr3l3/5lyiKwh/8wR8s9lLECvTZz34WRVEq3jZs2HBFzyGB2GX6wQ9+wKc+9Sn+7M/+jFdffZXt27fzpje9icnJycVemlhhEokE27dv56tf/epiL0WscM899xwf+9jHePnll9m7dy+5XI4HH3yQRCKx2EsTK0xzczN/+Zd/yeHDhzl06BD33nsvb3/72zl58uRiL02sUK+88grf+MY32LZt22IvRaxgmzdvZnx8vPz2wgsvXNHjpX39Zdq9ezc33XQTX/nKVwAoFou0tLTwiU98gk9/+tOLvDqxUimKwo9//GPe8Y53LPZSxCowNTVFbW0tzz33HHfeeediL0escF6vl7/+67/mt37rtxZ7KWKFicfj3HjjjXzta1/jL/7iL9ixYwd/8zd/s9jLEivMZz/7WX7yk59w9OjReT+H7Ihdhmw2y+HDh7n//vvLt+l0Ou6//37279+/iCsTQohrJxKJANoJshDXS6FQ4Pvf/z6JRII9e/Ys9nLECvSxj32MX/u1X6s4bxPieujt7aWxsZHOzk4effRRhoaGrujxhuu0rhVlenqaQqFAXV1dxe11dXV0d3cv0qqEEOLaKRaL/MEf/AG33XYbW7ZsWezliBXo+PHj7Nmzh3Q6jcPh4Mc//jGbNm1a7GWJFeb73/8+r776Kq+88spiL0WscLt37+Y73/kO69evZ3x8nM997nPccccdnDhxAqfTeVnPIYGYEEIIPvaxj3HixIkrzm8X4nKtX7+eo0ePEolE+NGPfsQHP/hBnnvuOQnGxDUzPDzMJz/5Sfbu3YvFYlns5YgV7s1vfnP5/W3btrF7927a2tr413/918tOuZZA7DJUV1ej1+uZmJiouH1iYoL6+vpFWpUQQlwbH//4x/n5z3/O888/T3Nz82IvR6xQJpOJrq4uAHbu3Mkrr7zCl770Jb7xjW8s8srESnH48GEmJye58cYby7cVCgWef/55vvKVr5DJZNDr9Yu4QrGSeTwe1q1bx9mzZy/7MVIjdhlMJhM7d+7kqaeeKt9WLBZ56qmnJL9dCLFsqarKxz/+cX784x/z9NNP09HRsdhLEqtIsVgkk8ks9jLECnLfffdx/Phxjh49Wn7btWsXjz76KEePHpUgTFxX8Xicc+fO0dDQcNmPkR2xy/SpT32KD37wg+zatYubb76Zv/mbvyGRSPDhD394sZcmVph4PF5xNaW/v5+jR4/i9XppbW1dxJWJleZjH/sYjz32GP/xH/+B0+nE7/cD4Ha7sVqti7w6sZJ85jOf4c1vfjOtra3EYjEee+wxnn32WX75y18u9tLECuJ0Os+rcbXb7fh8Pql9FdfcH/3RH/HWt76VtrY2xsbG+LM/+zP0ej3vfe97L/s5JBC7TO95z3uYmprif/yP/4Hf72fHjh088cQT5zXwEOJqHTp0iHvuuaf88ac+9SkAPvjBD/Kd73xnkVYlVqK/+7u/A+Duu++uuP3b3/42H/rQhxZ+QWLFmpyc5AMf+ADj4+O43W62bdvGL3/5Sx544IHFXpoQQszLyMgI733vewkEAtTU1HD77bfz8ssvU1NTc9nPIXPEhBBCCCGEEGKBSY2YEEIIIYQQQiwwCcSEEEIIIYQQYoFJICaEEEIIIYQQC0wCMSGEEEIIIYRYYBKICSGEEEIIIcQCk0BMCCGEEOL/b+cOQqJo4ziO/6ZsQR1zy5XVIFgqljyobYfQDUw6WEGCECUdBPeQGirMIYiFkPAgIR4UggJBN6LAg2cziKSIjYoo6VCJxHYZDAnXzIup76nh3V4N3xzHlO8HBmaeYf/Pn7kMP55nFgA8RhADAAAAAI8RxAAAAADAYwQxAMC20tjYqLq6us1uwxEKhWQYhgzD0MzMjCs1E4mEU9OyLFdqAgC8RRADAGwZP8PHasf169fV19enRCLheW+JREJ+v3/Fe52dnbJtW/n5+a7MVV9fL9u2VVlZ6Uo9AID3sja7AQAA1sq2bed8aGhIHR0d+vDhgzNmmqZM09yM1n4rLy9PRUVFrtXLzs5Wdna2fD6fazUBAN5iRQwAsGUUFRU5R35+vgzDyBgzTfM/WxOrq6vV3t4uy7K0Z88eBYNB9ff36/v374rFYsrLy9OhQ4c0MjKSMde7d+905swZmaapYDCohoYGTU9Pr9jX2NiYYrGY0ul0xurcan6uno2OjqqkpESmaer06dMZQXNsbEzHjh1Tbm6u/H6/jh8/rlQqta7nBwD4exDEAADb3p07dxQIBPTixQu1t7fr8uXLOn/+vKLRqF6/fq2amho1NDRofn5ekjQzM6OTJ08qEono1atXevDggaampnThwoUV60ejUfX29mr37t2ybVu2bevKlSu/7Wl+fl49PT26e/eunjx5os+fPzu/+fHjh+rq6nTixAmNj48rmUyqqalJhmG4+2AAAJuGrYkAgG2vvLxc165dkyTF43HduHFDgUBAly5dkiR1dHTo1q1bGh8fV0VFhW7evKlIJKKuri6nxsDAgPbv36+PHz8qHA5n1Pf5fBkrdGuxsLCg27dv6+DBg5KktrY2dXZ2SpJmZ2eVTqd19uxZ535JScn6HgIA4K/CihgAYNsrKytzznfu3KmCggKVlpY6Y8FgUJL05csXSdLbt2/1+PFj55sz0zR1+PBhSdLk5KQrPeXk5DghS5KKi4ud+ffu3avGxkadOnVKtbW16uvry9i2CADY+ghiAIBtb9euXRnXhmFkjP3c8re0tCRJmpubU21trd68eZNxTExMqKqqasN6Wl5edq4HBweVTCYVjUY1NDSkcDis58+fuzI3AGDzsTURAIBfHD16VMPDwwqFQsrKWtur0ufzaXFx0dU+IpGIIpGI4vG4Kisrdf/+fVVUVLg6BwBgc7AiBgDAL1pbW/X161ddvHhRL1++1OTkpEZHRxWLxVYNW6FQSHNzc3r06JGmp6edP/74E58+fVI8HlcymVQqldLDhw81MTHBd2IAsI0QxAAA+MW+ffv07NkzLS4uqqamRqWlpbIsS36/Xzt2rPzqjEajamlpUX19vQoLC9Xd3f3H8+fk5Oj9+/c6d+6cwuGwmpqa1Nraqubm5j+uCQD4uxjL/96QDgAAXBUKhWRZlizLcr12dXW1jhw5ot7eXtdrAwA2FitiAABssKtXr8o0TaXTaVfq3bt3T6Zp6unTp67UAwB4jxUxAAA2UCqV0sLCgiTpwIEDq25t/D++ffumqakpSZLf71cgEFh3TQCAtwhiAAAAAOAxtiYCAAAAgMcIYgAAAADgMYIYAAAAAHiMIAYAAAAAHiOIAQAAAIDHCGIAAAAA4DGCGAAAAAB4jCAGAAAAAB77B/coWtrgb6u8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#TODO: read latest script content from gitlab repository, as soon as %load works with Colab\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "data = np.loadtxt(\"data/log.dat\")\n", "ref = np.loadtxt(\"ref/m.dat\")\n", "\n", "fig, ax = plt.subplots(figsize=(10,5))\n", "cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']\n", "\n", "ax.plot(data[:,0]*1e9, data[:,1], '-', color = cycle[0], label = \"magnum.np - x\")\n", "ax.plot(ref[:,0]*1e9, ref[:,1], '-', color = cycle[0], linewidth = 6, alpha = 0.4, label = \"reference - x\")\n", "\n", "ax.plot(data[:,0]*1e9, data[:,2], '-', color = cycle[1], label = \"magnum.np - y\")\n", "ax.plot(ref[:,0]*1e9, ref[:,2], '-', color = cycle[1], linewidth = 6, alpha = 0.4, label = \"reference - y\")\n", "\n", "ax.plot(data[:,0]*1e9, data[:,3], '-', color = cycle[2], label = \"magnum.np - z\")\n", "ax.plot(ref[:,0]*1e9, ref[:,3], '-', color = cycle[2], linewidth = 6, alpha = 0.4, label = \"reference - z\")\n", "\n", "ax.set_xlim([0,5])\n", "ax.set_title(\"Standard Problem #5\")\n", "ax.set_xlabel(\"Time t[ns]\")\n", "ax.set_ylabel(\"Magnetization $m$\")\n", "ax.legend(ncol=3)\n", "ax.grid()\n", "fig.savefig(\"data/results.png\")\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 1 }